From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks
- URL: http://arxiv.org/abs/2406.06579v3
- Date: Thu, 17 Oct 2024 01:17:25 GMT
- Title: From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks
- Authors: Xiaofeng Zhang, Yihao Quan, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang, Chaochen Gu, Hao Tang, Jieping Ye,
- Abstract summary: We conduct experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks.
By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers.
- Score: 33.476693301050275
- License:
- Abstract: Large Vision Language Models (LVLMs) achieve great performance on visual-language reasoning tasks, however, the black-box nature of LVLMs hinders in-depth research on the reasoning mechanism. As all images need to be converted into image tokens to fit the input format of large language models (LLMs) along with natural language prompts, sequential visual representation is essential to the performance of LVLMs, and the information flow analysis approach can be an effective tool for determining interactions between these representations. In this paper, we propose integrating attention analysis with LLaVA-CAM, concretely, attention scores highlight relevant regions during forward propagation, while LLaVA-CAM captures gradient changes through backward propagation, revealing key image features. By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers. To validate our analysis, we conduct comprehensive experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks, and experimental results not only verify our hypothesis but also reveal a consistent pattern of information flow convergence in the corresponding layers, and the information flow cliff layer will be different due to different contexts. The paper's source code can be accessed from \url{https://github.com/zhangbaijin/From-Redundancy-to-Relevance}
Related papers
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Bridging Vision and Language Spaces with Assignment Prediction [47.04855334955006]
VLAP is a novel approach that bridges pretrained vision models and large language models (LLMs)
We harness well-established word embeddings to bridge two modality embedding spaces.
VLAP achieves substantial improvements over the previous linear transformation-based approaches.
arXiv Detail & Related papers (2024-04-15T10:04:15Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.