論文の概要: DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
- arxiv url: http://arxiv.org/abs/2412.12832v1
- Date: Tue, 17 Dec 2024 11:54:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:01:45.287039
- Title: DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
- Title(参考訳): DSGram:大規模言語モデルにおける文法的誤り訂正のための動的重み付けサブメトリック
- Authors: Jinxiang Xie, Yilin Li, Xunjian Yin, Xiaojun Wan,
- Abstract要約: 大規模言語モデル(LLM)に基づく文法的誤り訂正(GEC)モデルは、提供された金の参照から分岐する修正を生成することが多い。
この不一致は、従来の基準ベースの評価指標の信頼性を損なう。
本稿では,GECモデル,DSGram,Semantic Coherence,Edit Level,Fluencyを統合し,動的重み付け機構を活用する新しい評価フレームワークを提案する。
- 参考スコア(独自算出の注目度): 39.493913608472404
- License:
- Abstract: Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
- Abstract(参考訳): 文法的誤り訂正(GEC)モデルの性能評価は、大規模言語モデル(LLM)ベースのGECシステムが提供された金の参照から分岐する修正を生成するため、ますます困難になっている。
この不一致は、従来の基準ベースの評価指標の信頼性を損なう。
本研究では, DSGram, Semantic Coherence, Edit Level, Fluency を統合し, 動的重み付け機構を利用する GEC モデルのための新しい評価フレームワークを提案する。
本フレームワークでは,AHP(Analytic Hierarchy Process)と大規模言語モデルを用いて,各種評価基準の相対的重要性を検証している。
さらに、人間のアノテーションとLLMシミュレーション文を組み込んだデータセットを開発し、アルゴリズムの検証を行い、よりコスト効率の良いモデルを微調整する。
実験結果から,提案手法はGECモデル評価の有効性を高めることが示唆された。
関連論文リスト
- Assessing Generative Language Models in Classification Tasks: Performance and Self-Evaluation Capabilities in the Environmental and Climate Change Domain [0.0]
本稿では,2つの大規模言語モデル (LLMs) , GPT3.5 と Llama2 と 1つの小言語モデル (SLM) Gemma を,気候変動 (CC) と環境領域の3つの異なる分類課題で比較した。
論文 参考訳(メタデータ) (2024-08-30T15:52:41Z) - Investigating a Benchmark for Training-set free Evaluation of Linguistic Capabilities in Machine Reading Comprehension [12.09297288867446]
合成課題集合上でのトレーニングセット自由設定において最適化モデルを評価するためのフレームワークについて検討する。
生成手法の単純さにもかかわらず、データは自然性や語彙の多様性に関してクラウドソースのデータセットと競合する。
我々は、さらに実験を行い、最先端の言語モデルに基づくMRCシステムが、挑戦セットを正しく成功させるために学習できることを示します。
論文 参考訳(メタデータ) (2024-08-09T12:23:36Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Revisiting Meta-evaluation for Grammatical Error Correction [14.822205658480813]
SEEDAはGECメタ評価のための新しいデータセットである。
人間の評価を2つの異なる粒度で補正する。
その結果,既存の研究では編集基準が過小評価されていた可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-05T05:53:09Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Learning Evaluation Models from Large Language Models for Sequence
Generation [44.22820310679188]
大規模言語モデルは、シーケンス生成評価において最先端のパフォーマンスを達成するが、典型的には多数のパラメータを持つ。
テキスト評価用textbfcapability textbftransfer 法である textbfECT を提案し,その評価能力を LLM から比較的軽量な言語モデルに転送する。
提案するECTに基づいて、ChatGPTから様々な評価モデルを学び、それらを報酬モデルとして利用してシーケンス生成モデルを改善する。
論文 参考訳(メタデータ) (2023-08-08T16:41:16Z) - Rethinking Masked Language Modeling for Chinese Spelling Correction [70.85829000570203]
言語モデルと誤りモデルという2つの異なるモデルによる共同決定として,中国語のスペル補正(CSC)について検討する。
細調整されたBERTは、言語モデルに不適合なままエラーモデルに過度に適合する傾向にあり、その結果、分布外エラーパターンへの一般化が不十分であることがわかった。
微調整中に入力シーケンスから20%の非エラートークンをランダムにマスキングする非常に単純な戦略は、エラーモデルを犠牲にすることなく、はるかに優れた言語モデルを学ぶのに十分であることを示す。
論文 参考訳(メタデータ) (2023-05-28T13:19:12Z) - Linguistic Rules-Based Corpus Generation for Native Chinese Grammatical
Error Correction [36.74272211767197]
本稿では,言語規則に基づく大規模CGEC学習コーパスの構築手法を提案する。
実世界のシナリオにおける中国語話者の誤りから完全に導かれる、挑戦的なCGECベンチマークを提案する。
論文 参考訳(メタデータ) (2022-10-19T10:20:39Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
既存の文法的誤り訂正(GEC)のアプローチは、手動で作成したGECデータセットによる教師あり学習に依存している。
誤りが不適切に編集されたり、修正されなかったりする「ノイズ」は無視できないほどある。
本稿では,既存のモデルの予測整合性を利用して,これらのデータセットをデノマイズする自己補充手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T04:45:09Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。