Scrutinizing the Vulnerability of Decentralized Learning to Membership Inference Attacks
- URL: http://arxiv.org/abs/2412.12837v2
- Date: Thu, 06 Feb 2025 11:47:26 GMT
- Title: Scrutinizing the Vulnerability of Decentralized Learning to Membership Inference Attacks
- Authors: Ousmane Touat, Jezekael Brunon, Yacine Belal, Julien Nicolas, Mohamed Maouche, César Sabater, Sonia Ben Mokhtar,
- Abstract summary: We study the vulnerability to Membership Inference Attacks -- MIA -- in decentralized learning systems.
Our key finding is that the vulnerability to MIA is heavily correlated to the local model mixing strategy performed by each node.
Our paper draws a set of lessons learned for devising decentralized learning systems that reduce by design the vulnerability to MIA.
- Score: 1.5993362488149794
- License:
- Abstract: The primary promise of decentralized learning is to allow users to engage in the training of machine learning models in a collaborative manner while keeping their data on their premises and without relying on any central entity. However, this paradigm necessitates the exchange of model parameters or gradients between peers. Such exchanges can be exploited to infer sensitive information about training data, which is achieved through privacy attacks (e.g Membership Inference Attacks -- MIA). In order to devise effective defense mechanisms, it is important to understand the factors that increase/reduce the vulnerability of a given decentralized learning architecture to MIA. In this study, we extensively explore the vulnerability to MIA of various decentralized learning architectures by varying the graph structure (e.g number of neighbors), the graph dynamics, and the aggregation strategy, across diverse datasets and data distributions. Our key finding, which to the best of our knowledge we are the first to report, is that the vulnerability to MIA is heavily correlated to (i) the local model mixing strategy performed by each node upon reception of models from neighboring nodes and (ii) the global mixing properties of the communication graph. We illustrate these results experimentally using four datasets and by theoretically analyzing the mixing properties of various decentralized architectures. Our paper draws a set of lessons learned for devising decentralized learning systems that reduce by design the vulnerability to MIA.
Related papers
- When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
Machine learning models offer the capability to forecast future energy production or consumption.
However, legal and policy constraints within specific energy sectors present technical hurdles in utilizing data from diverse sources.
We propose adopting a Swarm Learning scheme, which replaces the centralized server with a blockchain-based distributed network.
arXiv Detail & Related papers (2024-06-07T08:42:26Z) - Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
Decentralized machine learning is gaining momentum, addressing infrastructure challenges and privacy concerns.
This study investigates the interplay between network structure and learning performance using three network topologies and six data distribution methods.
We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation.
arXiv Detail & Related papers (2024-02-28T11:13:53Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data [14.386062807300666]
In this paper, we focus on designing a decentralized learning algorithm that is less susceptible to variations in data distribution across devices.
We propose Global Update Tracking (GUT), a novel tracking-based method that aims to mitigate the impact of heterogeneous data in decentralized learning without introducing any communication overhead.
Our experiments show that the proposed method achieves state-of-the-art performance for decentralized learning on heterogeneous data via a $1-6%$ improvement in test accuracy compared to other existing techniques.
arXiv Detail & Related papers (2023-05-08T15:48:53Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years.
This work studies adversarial training over graphs, where individual agents are subjected to varied strength perturbation space.
arXiv Detail & Related papers (2023-03-23T15:05:16Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
We mounted adversarial attacks on a federated learning (FL) environment using three different datasets.
The attacks leveraged generative adversarial networks (GANs) to affect the learning process.
We reconstructed the real data of the victim from the shared global model parameters with all the applied datasets.
arXiv Detail & Related papers (2021-08-02T08:12:43Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.