Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks
- URL: http://arxiv.org/abs/2412.12843v1
- Date: Tue, 17 Dec 2024 12:11:04 GMT
- Title: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks
- Authors: Xiaxin Zhu, Fangming Guo, Xianlei Long, Qingyi Gu, Chao Chen, Fuqiang Gu,
- Abstract summary: Event-based semantic segmentation has great potential in autonomous driving and robotics.
Current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption.
We introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation.
- Score: 7.234661153788162
- License:
- Abstract: Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at least 7.30% and 3.30% mIoU, respectively, with extremely 5.48x lower energy consumption and 1.14x faster inference speed.
Related papers
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
Linear recurrent neural networks enable powerful long-range sequence modeling with constant memory usage and time-per-token during inference.
Unstructured sparsity offers a compelling solution, enabling substantial reductions in compute and memory requirements when accelerated by compatible hardware platforms.
We find that highly sparse linear RNNs consistently achieve better efficiency-performance trade-offs than dense baselines.
arXiv Detail & Related papers (2025-02-03T13:09:21Z) - SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
We propose SpikeBottleNet, a novel architecture for edge-cloud co-inference systems.
SpikeBottleNet integrates a spiking neuron model to significantly reduce energy consumption on edge devices.
arXiv Detail & Related papers (2024-10-11T09:59:21Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - Lightweight and Progressively-Scalable Networks for Semantic
Segmentation [100.63114424262234]
Multi-scale learning frameworks have been regarded as a capable class of models to boost semantic segmentation.
In this paper, we thoroughly analyze the design of convolutional blocks and the ways of interactions across multiple scales.
We devise Lightweight and Progressively-Scalable Networks (LPS-Net) that novelly expands the network complexity in a greedy manner.
arXiv Detail & Related papers (2022-07-27T16:00:28Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Dynamically Throttleable Neural Networks (TNN) [24.052859278938858]
Conditional computation for Deep Neural Networks (DNNs) reduce overall computational load and improve model accuracy by running a subset of the network.
We present a runtime throttleable neural network (TNN) that can adaptively self-regulate its own performance target and computing resources.
arXiv Detail & Related papers (2020-11-01T20:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.