論文の概要: ClarityEthic: Explainable Moral Judgment Utilizing Contrastive Ethical Insights from Large Language Models
- arxiv url: http://arxiv.org/abs/2412.12848v1
- Date: Tue, 17 Dec 2024 12:22:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:01:57.709093
- Title: ClarityEthic: Explainable Moral Judgment Utilizing Contrastive Ethical Insights from Large Language Models
- Title(参考訳): ClarityEthic: 大規模言語モデルからのコントラスト倫理的洞察を利用した説明可能なモラル判断
- Authors: Yuxi Sun, Wei Gao, Jing Ma, Hongzhan Lin, Ziyang Luo, Wenxuan Zhang,
- Abstract要約: 我々は、LLMの推論能力と対照的な学習を活用して関連する社会的規範を明らかにする、textitEthicと呼ばれる新しい道徳的判断手法を導入する。
本手法は,道徳的判断課題における最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 30.301864398780648
- License:
- Abstract: With the rise and widespread use of Large Language Models (LLMs), ensuring their safety is crucial to prevent harm to humans and promote ethical behaviors. However, directly assessing value valence (i.e., support or oppose) by leveraging large-scale data training is untrustworthy and inexplainable. We assume that emulating humans to rely on social norms to make moral decisions can help LLMs understand and predict moral judgment. However, capturing human values remains a challenge, as multiple related norms might conflict in specific contexts. Consider norms that are upheld by the majority and promote the well-being of society are more likely to be accepted and widely adopted (e.g., "don't cheat,"). Therefore, it is essential for LLM to identify the appropriate norms for a given scenario before making moral decisions. To this end, we introduce a novel moral judgment approach called \textit{ClarityEthic} that leverages LLMs' reasoning ability and contrastive learning to uncover relevant social norms for human actions from different perspectives and select the most reliable one to enhance judgment accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in moral judgment tasks. Moreover, human evaluations confirm that the generated social norms provide plausible explanations that support the judgments. This suggests that modeling human moral judgment with the emulating humans moral strategy is promising for improving the ethical behaviors of LLMs.
- Abstract(参考訳): LLM(Large Language Models)の普及と普及に伴い、人間の害を防ぎ、倫理的行動を促進するためには、安全性を確保することが不可欠である。
しかし、大規模なデータトレーニングを活用することで、価値価値(すなわち、サポートや反対)を直接評価することは、信頼できないし、説明できない。
道徳的判断を社会的規範に頼るように人間をエミュレートすることは、LLMが道徳的判断を理解し予測するのに役立つと仮定する。
しかし、複数の関連する規範が特定の文脈で矛盾する可能性があるため、人間の価値を捉えることは依然として困難である。
多数派が支持し、社会の幸福を促進する規範を考えると、より受け入れられ、広く採用される可能性が高い(例:「浮気はしない」)。
したがって、LLMは道徳的な決定を行う前に、与えられたシナリオの適切な規範を特定することが不可欠である。
そこで本研究では,LLMの推論能力とコントラスト学習を活用して,異なる視点から人間行動に関する社会的規範を解明し,最も信頼性の高いものを選択して精度を高める,新たな道徳的判断手法である「textit{ClarityEthic}」を導入する。
本手法は,道徳的判断課題における最先端の手法よりも優れていることを示す。
さらに、人的評価は、生成された社会的規範が、判断を支持する妥当な説明を提供することを確認した。
このことは、人間の道徳的戦略をエミュレートした人間の道徳的判断をモデル化することは、LLMの倫理的行動を改善するために有望であることを示している。
関連論文リスト
- Normative Evaluation of Large Language Models with Everyday Moral Dilemmas [0.0]
Reddit 上の "Am I the Asshole" (AITA) コミュニティから得られた複雑で日常的な道徳的ジレンマに基づいて,大規模言語モデル (LLM) を評価する。
以上の結果から,AITAサブレディットにおける人的評価とは大きく異なる,大きな言語モデルでは道徳的判断のパターンが異なることが示唆された。
論文 参考訳(メタデータ) (2025-01-30T01:29:46Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
大規模言語モデル(LLM)は、様々な分野における自動化と意思決定の推進の中心となっている。
本研究は,その道徳的特徴を評価するために,最も先進的なLCMの総合的比較分析を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:49:22Z) - Ethical Reasoning over Moral Alignment: A Case and Framework for
In-Context Ethical Policies in LLMs [19.675262411557235]
我々は、LLMを特定の倫理的原則に道徳的に整合させるのではなく、一般的な倫理的推論能力をそれらに注入すべきだと論じている。
我々は、道徳的ジレンマと規範的倫理の異なるフォアメル主義に関連する道徳的原則を統合する枠組みを開発する。
論文 参考訳(メタデータ) (2023-10-11T07:27:34Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
倫理的AIシステムの開発には倫理的判断が不可欠である。
一般的なアプローチは主にボトムアップ方式で実装されており、モラルに関するクラウドソースの意見に基づいて、大量の注釈付きデータを使用してモデルをトレーニングする。
本研究は、学際的な研究から確立された道徳理論を用いて道徳的推論を行うために、言語モデル(LM)を操る柔軟なトップダウンフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T15:57:32Z) - ClarifyDelphi: Reinforced Clarification Questions with Defeasibility
Rewards for Social and Moral Situations [81.70195684646681]
本稿では,ClarifyDelphiという対話型システムについて紹介する。
我々は、潜在的な答えが道徳的判断の多様化に繋がる質問が最も有益であると仮定する。
私たちの研究は究極的には、道徳的認知の柔軟性を研究してきた認知科学の研究にインスピレーションを受けています。
論文 参考訳(メタデータ) (2022-12-20T16:33:09Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AIシステムは人間の道徳的判断や決定を理解し、解釈し、予測しなければなりません。
AIの安全性に対する中心的な課題は、人間の道徳心の柔軟性を捉えることだ。
ルール破りの質問応答からなる新しい課題セットを提案する。
論文 参考訳(メタデータ) (2022-10-04T09:04:27Z) - Moral Stories: Situated Reasoning about Norms, Intents, Actions, and
their Consequences [36.884156839960184]
現代のNLGモデルが社会環境にデプロイされたシステムの行動優先度として機能するかどうかを検討する。
本研究では,「モラルストーリー」という,階層的,分枝的なナラティブのクラウドソーシングデータセットを導入し,基礎的,目標指向の社会推論の研究を行う。
論文 参考訳(メタデータ) (2020-12-31T17:28:01Z) - Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life
Anecdotes [72.64975113835018]
記述倫理に動機づけられた我々は、機械倫理に対する新しいデータ駆動アプローチを調査する。
Scruplesは、625,000の倫理的判断を持つ最初の大規模データセットで、32,000の実生活の逸話について紹介する。
我々のデータセットは最先端のニューラルネットワークモデルに対して大きな課題を示し、改善の余地を残しています。
論文 参考訳(メタデータ) (2020-08-20T17:34:15Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z) - Reinforcement Learning Under Moral Uncertainty [13.761051314923634]
機械学習の野心的な目標は、倫理的に振る舞うエージェントを作ることだ。
倫理的エージェントは、特定の道徳理論の下で正しい行動に報いることによって訓練することができるが、道徳性の本質について広く意見の相違がある。
本稿では、競合するデシダラタの異なる点を実現するための2つのトレーニング手法を提案し、モラルの不確実性の下で行動するための単純な環境におけるエージェントを訓練する。
論文 参考訳(メタデータ) (2020-06-08T16:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。