Microwave-to-Optical Quantum Transduction with Antiferromagnets
- URL: http://arxiv.org/abs/2412.12907v1
- Date: Tue, 17 Dec 2024 13:34:00 GMT
- Title: Microwave-to-Optical Quantum Transduction with Antiferromagnets
- Authors: Akihiko Sekine, Ryo Murakami, Yoshiyasu Doi,
- Abstract summary: Theory of microwave-to-optical quantum transduction mediated by antiferromagnetic magnons in antiferromagnets.
Study opens up a way for possible applications of antiferromagnetic materials in future quantum interconnects.
- Score: 0.04915744683251149
- License:
- Abstract: The quantum transduction, or equivalently quantum frequency conversion, between microwave and optical photons is essential for realizing scalable quantum computers with superconducting qubits. Due to the large frequency difference between microwave and optical ranges, the transduction needs to be done via intermediate bosonic modes or nonlinear processes. Regarding the transduction mediated by magnons, previous studies have so far utilized ferromagnetic magnons in ferromagnets. Here, we formulate a theory for the microwave-to-optical quantum transduction mediated by antiferromagnetic magnons in antiferromagnets. We derive analytical expressions for the transduction efficiency in the cases with and without an optical cavity, where a microwave cavity is used in both cases. In contrast to the case of the quantum transduction using ferromagnets, we find that the quantum transduction can occur even in the absence of an external static magnetic field. We also find that, in the case with an optical cavity the transduction efficiency takes a peak structure with respect to the sample thickness, indicating that there exists an optimal thickness, whereas in the case without an optical cavity the transduction efficiency is a monotonically increasing function of the sample thickness. Our study opens up a way for possible applications of antiferromagnetic materials in future quantum interconnects.
Related papers
- Microwave-to-optics conversion using magnetostatic modes and a tunable
optical cavity [7.043386765149337]
Quantum computing, quantum communication and quantum networks rely on hybrid quantum systems operating in different frequency ranges.
A quantum interface is demanded, which serves as a bridge to establish information linkage between different quantum systems operating at distinct frequencies.
Here, we realize the magnon-based microwave-light interface by adopting an optical cavity with adjustable free spectrum range.
arXiv Detail & Related papers (2024-03-01T08:17:18Z) - Microwave-to-Optical Quantum Transduction Utilizing the Topological Faraday Effect of Topological Insulator Heterostructures [0.04915744683251149]
We show that three-dimensional topological insulator thin films exhibit a topological Faraday effect that is independent of the sample thickness in the terahertz regime.
This leads to a large Faraday rotation angle and therefore enhanced light-magnon interaction in the thin film limit.
arXiv Detail & Related papers (2023-11-13T12:35:33Z) - Efficient Quantum Transduction Using Anti-Ferromagnetic Topological Insulators [10.115394047612014]
In this work, we discuss some general principles for quantum transducer design.
We then propose solid-state anti-ferromagnetic topological insulators to serve as particularly effective transducers.
arXiv Detail & Related papers (2023-08-17T15:30:16Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Squeezing Microwaves by Magnetostriction [7.972753752250943]
We show how a magnetostrictive interaction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field.
Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields.
arXiv Detail & Related papers (2021-01-07T23:32:34Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.