Microwave-to-Optical Quantum Transduction Utilizing the Topological Faraday Effect of Topological Insulator Heterostructures
- URL: http://arxiv.org/abs/2311.07293v2
- Date: Mon, 29 Jul 2024 09:25:32 GMT
- Title: Microwave-to-Optical Quantum Transduction Utilizing the Topological Faraday Effect of Topological Insulator Heterostructures
- Authors: Akihiko Sekine, Mari Ohfuchi, Yoshiyasu Doi,
- Abstract summary: We show that three-dimensional topological insulator thin films exhibit a topological Faraday effect that is independent of the sample thickness in the terahertz regime.
This leads to a large Faraday rotation angle and therefore enhanced light-magnon interaction in the thin film limit.
- Score: 0.04915744683251149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum transduction between microwave and optical photons is essential for realizing scalable quantum computers with superconducting qubits. Due to the large frequency difference between microwave and optical ranges, the transduction needs to be done via intermediate bosonic modes or nonlinear processes. So far, the transduction efficiency $\eta$ via the magneto-optic Faraday effect (i.e., the light-magnon interaction) in the ferromagnet YIG has been demonstrated to be small as $\eta\sim 10^{-8} \mathrm{-} 10^{-15}$ due to the weak magneto-optic coupling. Here, we take advantage of the fact that three-dimensional topological insulator thin films exhibit a topological Faraday effect that is independent of the sample thickness in the terahertz regime. This leads to a large Faraday rotation angle and therefore enhanced light-magnon interaction in the thin film limit. We show theoretically that the transduction efficiency between microwave and terahertz photons can be greatly improved to $\eta\sim10^{-4}$ by utilizing the heterostructures consisting of topological insulator thin films such as Bi$_2$Se$_3$ and ferromagnetic insulator thin films such as YIG.
Related papers
- Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Strong Purcell enhancement of an optical magnetic dipole transition [0.0]
Engineering the local density of states with nanophotonic structures is a powerful tool to control light-matter interactions via the Purcell effect.
We experimentally demonstrate the optical magnetic Purcell effect using a single rare earth ion coupled to a nanophotonic cavity.
This work demonstrates the fundamental equivalence of electric and magnetic density of states engineering, and provides a new tool for controlling light-matter interactions for a broader class of emitters.
arXiv Detail & Related papers (2023-07-06T14:37:58Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quasiparticle spectroscopy, transport, and magnetic properties of Nb
films used in superconducting transmon qubits [4.281703940559505]
Niobium thin films on silicon substrate used in the fabrication of superconducting qubits have been characterized.
The films show outstanding superconducting transition temperature of $T_c=9.35$ K and a fairly clean superconducting gap.
The response to the magnetic field is complicated, exhibiting significantly irreversible behavior and insufficient heat conductance.
arXiv Detail & Related papers (2022-07-23T22:45:23Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Magnetic-field resilience of 3D transmons with thin-film Al/AlO$_x$/Al
Josephson junctions approaching 1 T [0.0]
We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film 3D aluminum transmons.
Thin-film aluminum Josephson junctions are a suitable hardware for superconducting circuits in the high-magnetic-field regime.
arXiv Detail & Related papers (2021-11-01T17:43:15Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Tuning resonance energy transfer with magneto-optical properties of
graphene [0.0]
We investigate the resonance energy transfer rate between two quantum emitters near a suspended graphene sheet in vacuum.
Due to the extraordinary magneto-optical response of graphene, it allows for an active control and tunability of the RET.
Our results suggest that magneto-optical media may take the manipulation of energy transfer between quantum emitters to a whole new level.
arXiv Detail & Related papers (2020-10-19T20:15:55Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.