論文の概要: Truthful Text Sanitization Guided by Inference Attacks
- arxiv url: http://arxiv.org/abs/2412.12928v1
- Date: Tue, 17 Dec 2024 14:07:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:28.267446
- Title: Truthful Text Sanitization Guided by Inference Attacks
- Title(参考訳): 推論攻撃による真正テキストの消毒
- Authors: Ildikó Pilán, Benet Manzanares-Salor, David Sánchez, Pierre Lison,
- Abstract要約: テキストサニタイズの目的は、個人を直接または間接的に識別できる文書にそれらのテキストスパンを書き換えることである。
本稿では,原文のセマンティックコンテンツをサブセットする一般化に基づく自動テキスト衛生戦略を提案する。
- 参考スコア(独自算出の注目度): 2.824895388993495
- License:
- Abstract: The purpose of text sanitization is to rewrite those text spans in a document that may directly or indirectly identify an individual, to ensure they no longer disclose personal information. Text sanitization must strike a balance between preventing the leakage of personal information (privacy protection) while also retaining as much of the document's original content as possible (utility preservation). We present an automated text sanitization strategy based on generalizations, which are more abstract (but still informative) terms that subsume the semantic content of the original text spans. The approach relies on instruction-tuned large language models (LLMs) and is divided into two stages. The LLM is first applied to obtain truth-preserving replacement candidates and rank them according to their abstraction level. Those candidates are then evaluated for their ability to protect privacy by conducting inference attacks with the LLM. Finally, the system selects the most informative replacement shown to be resistant to those attacks. As a consequence of this two-stage process, the chosen replacements effectively balance utility and privacy. We also present novel metrics to automatically evaluate these two aspects without the need to manually annotate data. Empirical results on the Text Anonymization Benchmark show that the proposed approach leads to enhanced utility, with only a marginal increase in the risk of re-identifying protected individuals compared to fully suppressing the original information. Furthermore, the selected replacements are shown to be more truth-preserving and abstractive than previous methods.
- Abstract(参考訳): テキスト・サニタイズの目的は、個人を直接または間接的に識別する文書にそれらのテキストを書き換えることであり、それらが個人情報を開示しなくなることを保証することである。
テキストの衛生は、個人情報の漏洩(プライバシー保護)を防ぐことと、文書のオリジナルコンテンツを可能な限り多く保持すること(実用性保護)との間にバランスを取らなければならない。
一般化に基づく自動テキスト衛生戦略を提案する。これは、元のテキストのセマンティックコンテンツをサブセットする、より抽象的な(しかし、まだ意味のある)用語である。
このアプローチは命令調整された大規模言語モデル(LLM)に依存しており、2つの段階に分けられる。
LLMはまず、真に保存された代替候補を取得し、それらの抽象化レベルに応じてそれらをランク付けする。
それらの候補は、LSMで推論攻撃を行うことでプライバシーを保護する能力について評価される。
最後に、システムはこれらの攻撃に耐性があることを示す最も情報に富んだ代替品を選択する。
この2段階のプロセスの結果、選択された置換は、ユーティリティとプライバシを効果的にバランスさせる。
また、手動でアノテートすることなく、これらの2つの側面を自動的に評価する新しい指標も提示する。
テキスト匿名化ベンチマーク(Text Anonymization Benchmark)の実証結果から,提案手法が実用性の向上につながることが明らかとなった。
さらに、選択された置換は、以前の方法よりも真に保存され、抽象的であることが示されている。
関連論文リスト
- NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human [55.20137833039499]
我々は,人間によって使用される2つの共通戦略を用いて,機密テキストの衛生化を提案する。
我々は,クラウドソーシングと大規模言語モデルの利用を通じて,NAP2という最初のコーパスをキュレートする。
論文 参考訳(メタデータ) (2024-06-06T05:07:44Z) - Just Rewrite It Again: A Post-Processing Method for Enhanced Semantic Similarity and Privacy Preservation of Differentially Private Rewritten Text [3.3916160303055567]
本稿では,書き直したテキストを元のテキストと整合させることを目標とした,簡単な後処理手法を提案する。
以上の結果から,このような手法は,従来の入力よりも意味論的に類似した出力を生成するだけでなく,経験的プライバシ評価において平均的なスコアがよいテキストを生成することが示唆された。
論文 参考訳(メタデータ) (2024-05-30T08:41:33Z) - Silencing the Risk, Not the Whistle: A Semi-automated Text Sanitization Tool for Mitigating the Risk of Whistleblower Re-Identification [4.082799056366928]
ホイッスルブローイングは、公共部門と民間部門の両方で透明性と説明責任を確保するために不可欠である。
EUのWBDのような法的措置は、その範囲と有効性に制限されている。
現在のテキストのサニタイズツールは、一大のアプローチを踏襲し、匿名性を極端に限定している。
論文 参考訳(メタデータ) (2024-05-02T08:52:29Z) - Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models [63.91178922306669]
大規模言語モデル(LLM)に対するテキスト保護機構であるSilent Guardianを紹介する。
保護されるテキストを慎重に修正することで、TPEはLDMを誘導して最初にエンドトークンをサンプリングし、直接相互作用を終了させることができる。
本研究では,SGがターゲットテキストを種々の構成で効果的に保護し,保護成功率の約100%を達成できることを示す。
論文 参考訳(メタデータ) (2023-12-15T10:30:36Z) - Text Sanitization Beyond Specific Domains: Zero-Shot Redaction &
Substitution with Large Language Models [0.0]
本稿では,大規模言語モデルを用いて潜在的に敏感な情報を検出・置換するゼロショットテキスト衛生手法を提案する。
本手法は,テキストコヒーレンスとコンテキスト情報を維持しながら,プライバシ保護に優れることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:42:37Z) - Neural Text Sanitization with Privacy Risk Indicators: An Empirical
Analysis [2.9311414545087366]
テキスト・サニタイズのための2段階のアプローチを検討し、その経験的性能を詳細に分析する。
テキストサニタイズプロセスは、プライバシー指向のエンティティ認識器から始まり、識別可能な個人情報を表すテキストを識別する。
本稿では,言語モデルの確率,テキストスパン分類,シーケンスラベリング,摂動,Web検索に基づく再識別リスクの指標を5つ提示する。
論文 参考訳(メタデータ) (2023-10-22T14:17:27Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z) - Differential Privacy for Text Analytics via Natural Text Sanitization [44.95170585853761]
本稿では,本論文のテキスト・サニタイズへの直接的なアプローチとして,新たなローカルDP概念による感度と類似性を考察する。
衛生化されたテキストは、我々の衛生に配慮した事前訓練と微調整にも貢献し、将来性のあるユーティリティを備えたBERT言語モデル上でのプライバシー保護自然言語処理を可能にします。
論文 参考訳(メタデータ) (2021-06-02T15:15:10Z) - Adversarial Watermarking Transformer: Towards Tracing Text Provenance
with Data Hiding [80.3811072650087]
自然言語の透かしを防御として研究し,テキストの出所の発見と追跡に役立てる。
本稿では,適応型透かし変換器(AWT)とエンコーダ・デコーダ・デコーダを併用した対向型透かし変換器(AWT)について述べる。
AWTは、テキストにデータを隠蔽する最初のエンドツーエンドモデルである。
論文 参考訳(メタデータ) (2020-09-07T11:01:24Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。