Two Layer Walk: A Community-Aware Graph Embedding
- URL: http://arxiv.org/abs/2412.12933v2
- Date: Wed, 18 Dec 2024 13:52:01 GMT
- Title: Two Layer Walk: A Community-Aware Graph Embedding
- Authors: He Yu, Jing Liu,
- Abstract summary: Two Layer Walk (TLWalk) is a graph embedding algorithm that incorporates hierarchical community structures.
TLWalk balances intra- and inter-community relationships through a community-aware random walk mechanism.
Experiments on benchmark datasets show that TLWalk outperforms state-of-the-art methods.
- Score: 3.833708891059351
- License:
- Abstract: Community structures are critical for understanding the mesoscopic organization of networks, bridging local and global patterns. While methods such as DeepWalk and node2vec capture local positional information through random walks, they fail to preserve community structures. Other approaches like modularized nonnegative matrix factorization and evolutionary algorithms address this gap but are computationally expensive and unsuitable for large-scale networks. To overcome these limitations, we propose Two Layer Walk (TLWalk), a novel graph embedding algorithm that incorporates hierarchical community structures. TLWalk balances intra- and inter-community relationships through a community-aware random walk mechanism without requiring additional parameters. Theoretical analysis demonstrates that TLWalk effectively mitigates locality bias. Experiments on benchmark datasets show that TLWalk outperforms state-of-the-art methods, achieving up to 3.2% accuracy gains for link prediction tasks. By encoding dense local and sparse global structures, TLWalk proves robust and scalable across diverse networks, offering an efficient solution for network analysis.
Related papers
- Strong and Weak Random Walks on Signed Networks [4.739812980667592]
We propose a signed network random walk which can capture the structure of a network with more than two communities.
The walk results in a similarity matrix which can be used to cluster the nodes into antagonistic communities.
We show through a series of experiments on synthetic and empirical networks that the similarity matrix based on weak walks can be used for both unsupervised and semi-trivial clustering.
arXiv Detail & Related papers (2024-06-12T09:36:20Z) - Implicit models, latent compression, intrinsic biases, and cheap lunches
in community detection [0.0]
Community detection aims to partition a network into clusters of nodes to summarize its large-scale structure.
Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model.
Other methods are descriptive, dividing a network according to an objective motivated by a particular application.
We present a solution that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model.
arXiv Detail & Related papers (2022-10-17T15:38:41Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Community detection using low-dimensional network embedding algorithms [1.052782170493037]
We rigorously understand the performance of two major algorithms, DeepWalk and node2vec, in recovering communities for canonical network models.
We prove that, given some fixed co-occurrence window, node2vec using random walks with a low non-backtracking probability can succeed for much sparser networks.
arXiv Detail & Related papers (2021-11-04T14:57:43Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z) - Consistency of random-walk based network embedding algorithms [13.214230533788932]
We study the node2vec and DeepWalk algorithms through the perspective of matrix factorization.
Our results indicate a subtle interplay between the sparsity of the observed networks, the window sizes of the random walks, and the convergence rates of the node2vec/DeepWalk embedding.
arXiv Detail & Related papers (2021-01-18T22:49:22Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Interpretable and Efficient Heterogeneous Graph Convolutional Network [27.316334213279973]
We propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in Heterogeneous Information Network (HINs)
ie-HGCN can automatically extract useful meta-paths for each object from all possible meta-paths within a length limit.
It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention.
arXiv Detail & Related papers (2020-05-27T06:06:00Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.