Interpretable and Efficient Heterogeneous Graph Convolutional Network
- URL: http://arxiv.org/abs/2005.13183v3
- Date: Wed, 8 Sep 2021 02:08:51 GMT
- Title: Interpretable and Efficient Heterogeneous Graph Convolutional Network
- Authors: Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, Quan Wang
- Abstract summary: We propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in Heterogeneous Information Network (HINs)
ie-HGCN can automatically extract useful meta-paths for each object from all possible meta-paths within a length limit.
It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention.
- Score: 27.316334213279973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Network (GCN) has achieved extraordinary success in
learning effective task-specific representations of nodes in graphs. However,
regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN
methods still suffer from two deficiencies: (1) they cannot flexibly explore
all possible meta-paths and extract the most useful ones for a target object,
which hinders both effectiveness and interpretability; (2) they often need to
generate intermediate meta-path based dense graphs, which leads to high
computational complexity. To address the above issues, we propose an
interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN)
to learn the representations of objects in HINs. It is designed as a
hierarchical aggregation architecture, i.e., object-level aggregation first,
followed by type-level aggregation. The novel architecture can automatically
extract useful meta-paths for each object from all possible meta-paths (within
a length limit), which brings good model interpretability. It can also reduce
the computational cost by avoiding intermediate HIN transformation and
neighborhood attention. We provide theoretical analysis about the proposed
ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its
connection to the spectral graph convolution on HINs, and its quasi-linear time
complexity. Extensive experiments on three real network datasets demonstrate
the superiority of ie-HGCN over the state-of-the-art methods.
Related papers
- Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Heterogeneous Graph Tree Networks [8.50892442127182]
Heterogeneous graph neural networks (HGNNs) have attracted increasing research interest in recent three years.
One class is meta-path-based HGNNs which either require domain knowledge to handcraft meta-paths or consume huge amount of time and memory to automatically construct meta-paths.
We propose two models: Heterogeneous Graph Tree Convolutional Network (HetGTCN) and Heterogeneous Graph Tree Attention Network (HetGTAN)
arXiv Detail & Related papers (2022-09-01T17:22:01Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.