論文の概要: Improving Fine-grained Visual Understanding in VLMs through Text-Only Training
- arxiv url: http://arxiv.org/abs/2412.12940v1
- Date: Tue, 17 Dec 2024 14:18:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:27.653764
- Title: Improving Fine-grained Visual Understanding in VLMs through Text-Only Training
- Title(参考訳): テキストオンリートレーニングによるVLMのきめ細かい視覚理解の改善
- Authors: Dasol Choi, Guijin Son, Soo Yong Kim, Gio Paik, Seunghyeok Hong,
- Abstract要約: テキストのみの学習を通して視覚言語モデル(VLM)におけるきめ細かい視覚的理解を高める可能性について検討する。
我々は2つの異なる領域、細粒度の種分類と文化的な視覚的理解タスクについて包括的な実験を行った。
その結果,テキストのみのトレーニングは従来の画像テキスト学習に匹敵するが,計算コストは大幅に削減できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Visual-Language Models (VLMs) have become a powerful tool for bridging the gap between visual and linguistic understanding. However, the conventional learning approaches for VLMs often suffer from limitations, such as the high resource requirements of collecting and training image-text paired data. Recent research has suggested that language understanding plays a crucial role in the performance of VLMs, potentially indicating that text-only training could be a viable approach. In this work, we investigate the feasibility of enhancing fine-grained visual understanding in VLMs through text-only training. Inspired by how humans develop visual concept understanding, where rich textual descriptions can guide visual recognition, we hypothesize that VLMs can also benefit from leveraging text-based representations to improve their visual recognition abilities. We conduct comprehensive experiments on two distinct domains: fine-grained species classification and cultural visual understanding tasks. Our findings demonstrate that text-only training can be comparable to conventional image-text training while significantly reducing computational costs. This suggests a more efficient and cost-effective pathway for advancing VLM capabilities, particularly valuable in resource-constrained environments.
- Abstract(参考訳): 視覚言語モデル(VLM)は、視覚的理解と言語的理解のギャップを埋めるための強力なツールとなっている。
しかしながら、VLMの従来の学習手法は、画像とテキストのペアデータを収集し、訓練する際の高いリソース要件のような制限に悩まされることが多い。
近年の研究では、VLMのパフォーマンスにおいて言語理解が重要な役割を担っていることが示唆されており、テキストのみのトレーニングが実行可能なアプローチである可能性が示唆されている。
本研究は,VLMの微細な視覚的理解をテキストのみによる学習で向上する可能性について検討する。
人間が視覚概念を理解する方法に触発されて、リッチなテキスト記述が視覚認識を導くことができるようになり、VLMはテキストベースの表現を活用して視覚認識能力を向上させることができるという仮説を立てた。
我々は2つの異なる領域、細粒度の種分類と文化的な視覚的理解タスクについて包括的な実験を行った。
その結果,テキストのみのトレーニングは従来の画像テキスト学習に匹敵するが,計算コストは大幅に削減できることがわかった。
これは、特に資源制約のある環境では、VLMの能力を向上させるためのより効率的でコスト効率の良い経路であることを示している。
関連論文リスト
- Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
マルチモーダルな大言語モデル(MLLM)は、視覚と言語の間のエレガントな橋渡しを約束している。
本稿では,MLLM が欠落した視覚機能を取り戻すのに役立つ Visual Token Complement フレームワーク (VTC) を提案する。
我々のVTCは、テキスト不関連特徴を特定するためのガイドとしてテキスト・ツー・イメージ生成を統合し、視覚的セレクタを開発し、補完的な視覚的トークンを生成する。
論文 参考訳(メタデータ) (2024-08-09T12:13:01Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Improving Visual Commonsense in Language Models via Multiple Image Generation [41.565399860320966]
既存の大規模言語モデル(LLM)は、主にテキストデータのみを使用して訓練されている。
視覚言語モデルは視覚的に指向するタスクに優れており、基本的なコモンセンス推論のような視覚的でないタスクでは失敗することが多い。
この分散は、基本的なテキストベースの言語推論と堅牢な視覚的理解の統合という、重要な課題を浮き彫りにする。
論文 参考訳(メタデータ) (2024-06-19T15:17:10Z) - XCoOp: Explainable Prompt Learning for Computer-Aided Diagnosis via Concept-guided Context Optimization [4.634780391920529]
本稿では,画像,学習可能なプロンプト,臨床概念に基づくプロンプトのセマンティクスを整合させることにより,医療知識を活用する新しい説明可能なプロンプト学習フレームワークを提案する。
我々のフレームワークは、大きな言語モデルから知識を引き出すことによって、価値ある概念アノテーションの欠如に対処する。
提案手法は,XAIにおける基礎モデルの有効性に光を当て,優れた診断性能,柔軟性,解釈可能性を実現する。
論文 参考訳(メタデータ) (2024-03-14T14:02:01Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z) - TouchStone: Evaluating Vision-Language Models by Language Models [91.69776377214814]
本稿では,LVLMの様々な能力を総合的に評価するために,強大な言語モデルを用いた評価手法を提案する。
オープンワールドイメージと質問からなる包括的ビジュアル対話データセットTouchStoneを構築し,5つの主要な機能カテゴリと27のサブタスクをカバーした。
GPT-4のような強力なLVLMは、テキスト機能のみを活用することで、対話品質を効果的に評価できることを実証する。
論文 参考訳(メタデータ) (2023-08-31T17:52:04Z) - Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining
on Visual Language Understanding [13.300199242824934]
視覚的・言語的な事前学習が、暗黙的な視覚的推論を含むテキストのみのタスクのパフォーマンスを向上させるかどうかを検討する。
本稿では,テキストエンコーダモデルの視覚的推論能力を探索するための視覚言語理解タスクを提案する。
また,テキストのみのタスクにCLIPなどのモデルを適用するための新しいゼロショット知識探索手法であるStroop Probingも提案する。
論文 参考訳(メタデータ) (2023-03-21T17:30:40Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
視覚言語事前学習のための視覚言語マスク付きオートエンコーダフレームワーク(VLMAE)を提案する。
VLMAEは視覚的生成学習を採用しており、モデルが細粒度で偏りのない特徴を取得するのを容易にする。
論文 参考訳(メタデータ) (2022-08-19T14:39:18Z) - Leveraging Visual Knowledge in Language Tasks: An Empirical Study on
Intermediate Pre-training for Cross-modal Knowledge Transfer [61.34424171458634]
視覚的知識を言語モデルに組み込むことがギャップを埋めるかどうかを検討する。
実験の結果,視覚的知識伝達は低リソース環境と完全教師付き環境の両方で性能を向上できることがわかった。
論文 参考訳(メタデータ) (2022-03-14T22:02:40Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。