論文の概要: Modeling Quantum Volume Using Randomized Benchmarking of Room-Temperature NV Center Quantum Registers
- arxiv url: http://arxiv.org/abs/2412.12959v1
- Date: Tue, 17 Dec 2024 14:43:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:02.183537
- Title: Modeling Quantum Volume Using Randomized Benchmarking of Room-Temperature NV Center Quantum Registers
- Title(参考訳): 室温NV中心量子レジスタのランダムベンチマークによる量子ボリュームのモデル化
- Authors: Tom Jaeger, MinSik Kwon, Max Keller, Rouven Maier, Nicholas Bronn, Regina Finsterhoelzl, Guido Burkard, Leon Buettner, Rebekka Eberle, Daniel Haehnel, Vadim Vorobyov, Joerg Wrachtrup,
- Abstract要約: 室温で動作しているダイヤモンドのNV中心に基づく量子レジスタのベンチマーク問題に取り組む。
オール・ツー・オール接続のおかげで、2と3のqubitゲートの性能は他のプラットフォームで有望で競争力がある。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurately estimating the performance of quantum hardware is crucial for comparing different platforms and predicting the performance and feasibility of quantum algorithms and applications. In this paper, we tackle the problem of benchmarking a quantum register based on the NV center in diamond operating at room temperature. We define the connectivity map as well as single qubit performance. Thanks to an all-to-all connectivity the 2 and 3 qubit gates performance is promising and competitive among other platforms. We experimentally calibrate the error model for the register and use it to estimate the quantum volume, a metric used for quantifying the quantum computational capabilities of the register, of 8. Our results pave the way towards the unification of different architectures of quantum hardware and evaluation of the joint metrics.
- Abstract(参考訳): 量子ハードウェアの性能を正確に推定することは、異なるプラットフォームを比較し、量子アルゴリズムとアプリケーションの性能と実現可能性を予測するために重要である。
本稿では,室温で動作しているダイヤモンドのNV中心に基づく量子レジスタのベンチマーク問題に取り組む。
接続マップと単一キュービット性能を定義する。
オール・ツー・オール接続のおかげで、2と3のqubitゲートの性能は他のプラットフォームで有望で競争力がある。
我々は、レジスタの誤差モデルを実験的に校正し、レジスタの量子計算能力の定量化に用いられる量子ボリュームを8。
本結果は,量子ハードウェアの異なるアーキテクチャの統合に向けての道のりと,ジョイントメトリクスの評価である。
関連論文リスト
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
本稿では、量子コンピューティングの検証とベンチマークのための新しいアプローチを提示し、実験的に実証する。
従来の情報理論的にセキュアな検証プロトコルとは異なり、我々のアプローチは完全にオンチップで実装されている。
我々の結果は、短期量子デバイスにおけるよりアクセスしやすく効率的な検証とベンチマーク戦略の道を開いた。
論文 参考訳(メタデータ) (2024-10-31T16:54:41Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Verifiable measurement-based quantum random sampling with trapped ions [0.7978498178655667]
量子コンピュータは、今、彼らの古典的なコンピュータよりも優れています。
この利点を示す方法の1つは、量子コンピューティングデバイス上で実行される量子ランダムサンプリングである。
ここでは、量子計算の計測に基づくモデルにおいて、効率よく検証可能な量子ランダムサンプリングを実験的に示す。
論文 参考訳(メタデータ) (2023-07-26T18:00:03Z) - Enhancing Quantum Annealing in Digital-Analog Quantum Computing [0.0]
デジタルアナログ量子コンピューティング(DAQC)は、実用的な量子コンピュータを構築する際の課題に対処するための有望なアプローチを提供する。
本稿では,量子アニールの性能向上を目的としたアルゴリズムを提案する。
本研究では、量子回路を用いた量子データ処理が、量子情報を捨てる古典的なデータ処理より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-03T09:16:15Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Quantum Computer Benchmarking via Quantum Algorithms [0.0]
本稿では,量子アルゴリズム,アーキテクチャを意識した量子ノイズモデル,および量子コンピュータをベンチマークする理想的なシミュレータを利用するフレームワークを提案する。
ベンチマークメトリクスは、量子コンピュータの進化と、シミュレートされたノイズと理想的な量子進化の違いを強調している。
論文 参考訳(メタデータ) (2021-12-17T11:54:05Z) - Application-Oriented Performance Benchmarks for Quantum Computing [0.0]
ベンチマークスイートは、広く使用可能なように設計されている。
我々の手法は、今後5年以内に出現するであろう量子コンピューティングハードウェアの進歩を予想するために構築されている。
論文 参考訳(メタデータ) (2021-10-07T01:45:06Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。