Assessing Quantum and Classical Approaches to Combinatorial Optimization: Testing Quadratic Speed-ups for Heuristic Algorithms
- URL: http://arxiv.org/abs/2412.13035v1
- Date: Tue, 17 Dec 2024 15:59:32 GMT
- Title: Assessing Quantum and Classical Approaches to Combinatorial Optimization: Testing Quadratic Speed-ups for Heuristic Algorithms
- Authors: Pedro C. S. Costa, Mauro E. S. Morales, Dong An, Yuval R. Sanders,
- Abstract summary: We highlight the challenges involved in quantum and classical benchmarkings for quadratic optimization (CO)
Our numerical analysis casts doubt on the idea that current methods exhibit any quantum advantage at all.
We conclude that more careful numerical investigations are needed to evaluate the potential for quantum advantage in CO.
- Score: 2.1909093150752303
- License:
- Abstract: Many recent investigations conclude, based on asymptotic complexity analyses, that quantum computers could accelerate combinatorial optimization (CO) tasks relative to a purely classical computer. However, asymptotic analysis alone cannot support a credible claim of quantum advantage. Here, we highlight the challenges involved in benchmarking quantum and classical heuristics for combinatorial optimization (CO), with a focus on the Sherrington-Kirkpatrick problem. Whereas hope remains that a quadratic quantum advantage is possible,our numerical analysis casts doubt on the idea that current methods exhibit any quantum advantage at all. This doubt arises because even a simple classical approach can match with quantum methods we investigated. We conclude that more careful numerical investigations are needed to evaluate the potential for quantum advantage in CO, and we give some possible future directions for such investigations.
Related papers
- Quantum Subroutines in Branch-Price-and-Cut for Vehicle Routing [0.0]
We demonstrate in this work how quantums with limited resources can be integrated in large-scale exact optimization algorithms for NP-hard problems.
A key feature of our algorithm is it not only from the best solution returned by the quantum but from all solutions below a certain cost threshold.
arXiv Detail & Related papers (2024-12-20T08:27:23Z) - Realistic Runtime Analysis for Quantum Simplex Computation [0.4407851469168588]
We present a quantum analog for classical runtime analysis when solving real-world instances of important optimization problems.
We show that a practical quantum advantage for realistic problem sizes would require quantum gate operation times that are considerably below current physical limitations.
arXiv Detail & Related papers (2023-11-16T16:11:44Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Limitations of optimization algorithms on noisy quantum devices [0.0]
We present a transparent way of comparing classical algorithms to quantum ones running on near-term quantum devices.
Our approach is based on the combination of entropic inequalities that determine how fast the quantum state converges to the fixed point of the noise model.
arXiv Detail & Related papers (2020-09-11T17:07:26Z) - Prospects for Quantum Enhancement with Diabatic Quantum Annealing [0.0]
We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup.
We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several quantum optimization algorithms.
We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians.
arXiv Detail & Related papers (2020-08-22T21:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.