論文の概要: Identifying Bias in Deep Neural Networks Using Image Transforms
- arxiv url: http://arxiv.org/abs/2412.13079v1
- Date: Tue, 17 Dec 2024 16:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:02:08.196692
- Title: Identifying Bias in Deep Neural Networks Using Image Transforms
- Title(参考訳): 画像変換を用いたディープニューラルネットワークのバイアス同定
- Authors: Sai Teja Erukude, Akhil Joshi, Lior Shamir,
- Abstract要約: CNNは過去20年で最もよく使われている計算ツールの1つになっている。
CNNの主な欠点の1つは、イメージデータがどのように分析されているかをユーザが必ずしも知ることができないブラックボックスとして動作することだ。
これはニューラルネットワークのパフォーマンス評価に影響を与えるが、識別が難しい隠れバイアスにつながる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: CNNs have become one of the most commonly used computational tool in the past two decades. One of the primary downsides of CNNs is that they work as a ``black box", where the user cannot necessarily know how the image data are analyzed, and therefore needs to rely on empirical evaluation to test the efficacy of a trained CNN. This can lead to hidden biases that affect the performance evaluation of neural networks, but are difficult to identify. Here we discuss examples of such hidden biases in common and widely used benchmark datasets, and propose techniques for identifying dataset biases that can affect the standard performance evaluation metrics. One effective approach to identify dataset bias is to perform image classification by using merely blank background parts of the original images. However, in some situations a blank background in the images is not available, making it more difficult to separate foreground or contextual information from the bias. To overcome this, we propose a method to identify dataset bias without the need to crop background information from the images. That method is based on applying several image transforms to the original images, including Fourier transform, wavelet transforms, median filter, and their combinations. These transforms were applied to recover background bias information that CNNs use to classify images. This transformations affect the contextual visual information in a different manner than it affects the systemic background bias. Therefore, the method can distinguish between contextual information and the bias, and alert on the presence of background bias even without the need to separate sub-images parts from the blank background of the original images. Code used in the experiments is publicly available.
- Abstract(参考訳): CNNは過去20年で最もよく使われている計算ツールの1つになっている。
CNNの主な欠点の1つは、「ブラックボックス」として機能し、ユーザーは必ずしも画像データがどのように分析されているかを知ることができないため、訓練されたCNNの有効性をテストするために経験的評価に頼る必要があることである。
これはニューラルネットワークのパフォーマンス評価に影響を与えるが、識別が難しい隠れバイアスにつながる可能性がある。
本稿では、一般的なベンチマークデータセットにおいて、そのような隠れバイアスの例を論じ、標準性能評価指標に影響を与える可能性のあるデータセットバイアスを特定する手法を提案する。
データセットバイアスを特定するための効果的なアプローチの1つは、オリジナルの画像の単に空白の背景部分を使用することで、画像分類を行うことである。
しかし、いくつかの状況では、画像の空白背景が利用できないため、前景情報や文脈情報をバイアスから切り離すことがより困難になる。
そこで本研究では,画像から背景情報を収集することなく,データセットのバイアスを識別する手法を提案する。
この方法は、フーリエ変換、ウェーブレット変換、中央フィルタ、およびそれらの組み合わせを含む、元の画像に複数の画像変換を適用することに基づいている。
これらの変換は、CNNが画像の分類に使用する背景バイアス情報を復元するために適用された。
この変換は、背景バイアスに影響を及ぼすのとは異なる方法で、文脈的な視覚情報に影響を与える。
そこで,本手法はコンテキスト情報とバイアスを区別し,元の画像の空白背景からサブイメージ部分を切り離す必要がなく,背景バイアスの存在を警告することができる。
実験で使用されるコードは公開されている。
関連論文リスト
- Mitigating Bias Using Model-Agnostic Data Attribution [2.9868610316099335]
機械学習モデルにおけるバイアスの緩和は、公平性と公平性を保証するための重要な取り組みである。
本稿では, 画素画像の属性を利用して, バイアス属性を含む画像の領域を特定し, 正規化することで, バイアスに対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-08T13:00:56Z) - Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic
Contrast Sets [52.77024349608834]
視覚言語モデルは、インターネットから未計算の画像テキストペアの事前トレーニング中に学んだ社会的バイアスを永続し、増幅することができる。
COCO Captionsは、背景コンテキストとその場にいる人々の性別間のバイアスを評価するために最も一般的に使用されるデータセットである。
本研究では,COCOデータセットを男女バランスの取れたコントラストセットで拡張する新しいデータセットデバイアスパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:59:18Z) - Mitigating Test-Time Bias for Fair Image Retrieval [18.349154934096784]
我々は、中立なテキストクエリにより、公平で偏りのない画像検索結果を生成するという課題に対処する。
本稿では,事前学習した視覚言語モデルから出力を後処理する簡単な手法であるポストホックバイアス緩和手法を提案する。
提案手法は,テキストによる画像検索結果において,既存の様々なバイアス軽減手法と比較して,最も低いバイアスを実現する。
論文 参考訳(メタデータ) (2023-05-23T21:31:16Z) - Invariant Learning via Diffusion Dreamed Distribution Shifts [121.71383835729848]
拡散ドリーム分布シフト(D3S)と呼ばれるデータセットを提案する。
D3Sは、テキストプロンプトを用いてStableDiffusionを通じて生成された合成画像と、サンプルフォアグラウンドイメージを背景テンプレートイメージにペーストした画像ガイドから構成される。
拡散モデルの驚くべきフォトリアリズムのため、我々の画像は以前の合成データセットよりも自然な画像に近い。
論文 参考訳(メタデータ) (2022-11-18T17:07:43Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - CLAD: A Contrastive Learning based Approach for Background Debiasing [43.0296255565593]
我々は,CNNにおける背景バイアスを軽減するために,対照的な学習に基づくアプローチを導入する。
前回のベンチマークを4.1%で上回り、バックグラウンドチャレンジデータセットで最先端の結果を得た。
論文 参考訳(メタデータ) (2022-10-06T08:33:23Z) - On Background Bias in Deep Metric Learning [5.368313160283353]
画像背景がDeep Metric Learningモデルに与える影響を分析する。
トレーニング中の画像の背景をランダムな背景画像に置き換えることでこの問題が軽減されることを示す。
論文 参考訳(メタデータ) (2022-10-04T13:57:39Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
学習した表現の一般化性を低減することにより,データセットのバイアスが事前学習に悪影響を及ぼすことを示す。
実験では、この単純な手法により、ゼロショット画像認識精度が向上し、画像レベルの分布シフトに対するロバスト性が向上することを示した。
論文 参考訳(メタデータ) (2022-06-02T16:12:26Z) - To Find Waldo You Need Contextual Cues: Debiasing Who's Waldo [53.370023611101175]
本稿では,Cuiらによって提案されたPerson-centric Visual Groundingタスクに対して,偏りのあるデータセットを提案する。
画像とキャプションが与えられた場合、PCVGはキャプションに記載されている人物の名前と、画像内の人物を指し示すバウンディングボックスをペアリングする必要がある。
オリジナルのWho's Waldoデータセットには、メソッドによって簡単に解ける多数のバイアスのあるサンプルが含まれていることが分かりました。
論文 参考訳(メタデータ) (2022-03-30T21:35:53Z) - Data Generation using Texture Co-occurrence and Spatial Self-Similarity
for Debiasing [6.976822832216875]
本稿では, 反対ラベル付き画像のテクスチャ表現を用いて, 付加画像を明示的に生成する新しいデバイアス手法を提案する。
新たに生成された各画像は、反対ラベルのターゲット画像からテクスチャを転送しながら、ソース画像から類似した空間情報を含む。
本モデルでは,生成画像のテクスチャがターゲットと類似しているか否かを決定するテクスチャ共起損失と,生成画像とソース画像間の空間的詳細がよく保存されているかどうかを決定する空間的自己相似損失とを統合する。
論文 参考訳(メタデータ) (2021-10-15T08:04:59Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
Wellington Posteriorは、同じシーンで生成された可能性のあるデータに応答して得られるであろう結果の分布である。
We we explore the use of data augmentation, dropout, ensembling, single-view reconstruction and model linearization to compute a Wellington Posterior。
他にも、生成逆数ネットワーク、ニューラルレイディアンスフィールド、条件付き事前ネットワークなどの条件付き生成モデルの使用がある。
論文 参考訳(メタデータ) (2021-06-25T20:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。