論文の概要: AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
- arxiv url: http://arxiv.org/abs/2412.13102v3
- Date: Fri, 20 Dec 2024 05:42:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 13:01:39.719919
- Title: AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
- Title(参考訳): AIR-Bench: 自動不均一情報検索ベンチマーク
- Authors: Jianlyu Chen, Nan Wang, Chaofan Li, Bo Wang, Shitao Xiao, Han Xiao, Hao Liao, Defu Lian, Zheng Liu,
- Abstract要約: 自動不均一情報検索ベンチマーク(AIR-Bench)を提案する。
AIR-Benchのテストデータは、人間の介入なしに、大きな言語モデル(LLM)によって自動的に生成される。
信頼性が高く堅牢なデータ生成パイプラインを開発し、多種多様な高品質な評価データセットを自動的に作成する。
- 参考スコア(独自算出の注目度): 30.056032021141394
- License:
- Abstract: Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
- Abstract(参考訳): 評価は情報検索(IR)モデルの進歩において重要な役割を担っている。
しかしながら、事前定義されたドメインと人間ラベル付きデータに基づく現在のベンチマークでは、費用対効果と効率の両面において、新興ドメインに対する評価ニーズに対処する際の制限に直面している。
この課題に対処するために、自動不均一情報検索ベンチマーク(AIR-Bench)を提案する。
AIR-Benchには3つの重要な特徴がある。
1)自動化。
AIR-Benchのテストデータは、人間の介入なしに、大きな言語モデル(LLM)によって自動的に生成される。
2)異種。
AIR-Benchのテストデータは、さまざまなタスク、ドメイン、言語に対して生成される。
3)動的。
AIR-Benchがカバーしているドメインと言語は、コミュニティ開発者にとってより包括的な評価ベンチマークを提供するために、常に拡張されています。
実世界のコーパスに基づく多種多様な高品質な評価データセットを自動生成する信頼性と堅牢なデータ生成パイプラインを開発した。
以上の結果から,AIR-Benchで生成されたテストデータと人間のラベルによるテストデータとの整合性は良好であり,AIR-BenchがIRモデル評価の信頼性の高いベンチマークとなることが示唆された。
AIR-Benchのリソースはhttps://github.com/AIR-Bench/AIR-Benchで公開されている。
関連論文リスト
- BENCHAGENTS: Automated Benchmark Creation with Agent Interaction [16.4783894348333]
BENCHAGENTSは,大規模言語モデル(LLM)を体系的に活用し,複雑な機能のためのベンチマーク作成を自動化するフレームワークである。
我々は、BENCHAGENTSを用いて、テキスト生成時の計画と制約満足度に関連する機能を評価するベンチマークを作成する。
次に、これらのベンチマークを使用して、7つの最先端モデルを調査し、共通の障害モードとモデルの違いに関する新たな洞察を抽出する。
論文 参考訳(メタデータ) (2024-10-29T22:56:18Z) - AutoPenBench: Benchmarking Generative Agents for Penetration Testing [42.681170697805726]
本稿では,自動貫入試験における生成エージェント評価のためのオープンベンチマークであるAutoPenBenchを紹介する。
エージェントが攻撃しなければならない脆弱性のあるシステムを表す33のタスクを含む包括的フレームワークを提案する。
完全自律型と半自律型という2つのエージェントアーキテクチャをテストすることで,AutoPenBenchのメリットを示す。
論文 参考訳(メタデータ) (2024-10-04T08:24:15Z) - WeQA: A Benchmark for Retrieval Augmented Generation in Wind Energy Domain [2.8514947506989707]
ドメイン関連RAGベンチマークを生成するための包括的なフレームワークを提案する。
我々のフレームワークは、人間(ドメインの専門家)-AI大言語モデル(LLM)による自動質問応答生成に基づいている。
風力エネルギー領域の第一級ベンチマークであるWeQAを導入することで、この枠組みを実証する。
論文 参考訳(メタデータ) (2024-08-21T17:43:11Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,DA手法の評価と,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの公平な評価を行うフレームワークを提案する。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models [84.65095045762524]
3つのデシラタを言語モデルのための優れたベンチマークとして提示する。
ベンチマークでは、以前のベンチマークでは示されていなかったモデルランキングの新しいトレンドが明らかになった。
AutoBencherを使って、数学、多言語、知識集約的な質問応答のためのデータセットを作成しています。
論文 参考訳(メタデータ) (2024-07-11T10:03:47Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
AIR-Benchは,Large Audio-Language Models (LALM) の様々な種類の音声信号を理解し,テキスト形式で人間と対話する能力を評価する最初のベンチマークである。
その結果, GPT-4による評価と人間による評価との間には高い一貫性が認められた。
論文 参考訳(メタデータ) (2024-02-12T15:41:22Z) - Tool-Augmented Reward Modeling [58.381678612409]
本稿では,外部環境へのアクセスによるRMの強化により,制約に対処するツール拡張された嗜好モデリング手法であるThemisを提案する。
我々の研究は、外部ツールをRMに統合し、様々な外部ソースとの相互作用を可能にすることを目的としている。
人間の評価では、テミスで訓練されたRLHFはベースラインと比較して平均32%の勝利率を得る。
論文 参考訳(メタデータ) (2023-10-02T09:47:40Z) - Mystique: Enabling Accurate and Scalable Generation of Production AI
Benchmarks [2.0315147707806283]
Mystiqueは、プロダクションAIベンチマーク生成のための正確でスケーラブルなフレームワークである。
Mystiqueは、オーバーヘッドランタイムとインスツルメンテーションの労力の観点から、軽量なデータ収集のためにスケーラブルである。
我々は,本手法をいくつかの実運用AIモデルで評価し,Mystiqueで生成されたベンチマークがオリジナルのAIモデルとよく似ていることを示す。
論文 参考訳(メタデータ) (2022-12-16T18:46:37Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - AIBench Training: Balanced Industry-Standard AI Training Benchmarking [26.820244556465333]
新しいAIアーキテクチャ/システムのアーリーステージ評価には、安価なベンチマークが必要だ。
私たちは現実世界のベンチマークを使って、学習力学に影響を与える要因をカバーしています。
私たちは、最も包括的なAIトレーニングベンチマークスイートにコントリビュートしています。
論文 参考訳(メタデータ) (2020-04-30T11:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。