論文の概要: Improving Explainability of Sentence-level Metrics via Edit-level Attribution for Grammatical Error Correction
- arxiv url: http://arxiv.org/abs/2412.13110v1
- Date: Tue, 17 Dec 2024 17:31:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:21.848634
- Title: Improving Explainability of Sentence-level Metrics via Edit-level Attribution for Grammatical Error Correction
- Title(参考訳): 文法的誤り訂正のための編集レベル属性による文レベルメトリクスの説明可能性の向上
- Authors: Takumi Goto, Justin Vasselli, Taro Watanabe,
- Abstract要約: 本稿では,個々の編集に文レベルスコアを寄与させ,特定の修正が全体のパフォーマンスにどのように貢献するかを考察する。
既存の文レベルのメトリクスを用いた実験は、異なる編集粒度間で高い一貫性を示し、人間の評価と約70%の一致を示す。
さらに、帰属結果に基づいてメトリクスのバイアスを分析し、正書法編集を無視する傾向などの傾向を明らかにする。
- 参考スコア(独自算出の注目度): 11.512856112792093
- License:
- Abstract: Various evaluation metrics have been proposed for Grammatical Error Correction (GEC), but many, particularly reference-free metrics, lack explainability. This lack of explainability hinders researchers from analyzing the strengths and weaknesses of GEC models and limits the ability to provide detailed feedback for users. To address this issue, we propose attributing sentence-level scores to individual edits, providing insight into how specific corrections contribute to the overall performance. For the attribution method, we use Shapley values, from cooperative game theory, to compute the contribution of each edit. Experiments with existing sentence-level metrics demonstrate high consistency across different edit granularities and show approximately 70\% alignment with human evaluations. In addition, we analyze biases in the metrics based on the attribution results, revealing trends such as the tendency to ignore orthographic edits. Our implementation is available at \url{https://github.com/naist-nlp/gec-attribute}.
- Abstract(参考訳): 文法的誤り訂正(GEC)には様々な評価指標が提案されているが、特に基準のない指標の多くは説明不可能である。
この説明責任の欠如は、研究者がGECモデルの強みと弱みを分析し、ユーザに詳細なフィードバックを提供する能力を制限することを妨げている。
この問題に対処するため,個々の編集に文レベルのスコアを付与することを提案し,特定の修正が全体のパフォーマンスにどのように貢献するかを考察する。
帰属法では、協調ゲーム理論からシェープリー値を用いて各編集の寄与を計算する。
既存の文レベルのメトリクスを用いた実験は、異なる編集粒度間で高い一貫性を示し、人間の評価と約70 %の一致を示す。
さらに、帰属結果に基づいてメトリクスのバイアスを分析し、正書法編集を無視する傾向などの傾向を明らかにする。
我々の実装は \url{https://github.com/naist-nlp/gec-attribute} で利用可能です。
関連論文リスト
- EXCGEC: A Benchmark of Edit-wise Explainable Chinese Grammatical Error Correction [21.869368698234247]
本稿では,修正作業と説明作業の一体的な役割に着目したExplainable GEC(EXGEC)の課題を紹介する。
提案するEXCGECは,8,216個の説明増補サンプルからなる中国語EXGECの適合ベンチマークである。
論文 参考訳(メタデータ) (2024-07-01T03:06:41Z) - Revisiting Meta-evaluation for Grammatical Error Correction [14.822205658480813]
SEEDAはGECメタ評価のための新しいデータセットである。
人間の評価を2つの異なる粒度で補正する。
その結果,既存の研究では編集基準が過小評価されていた可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-05T05:53:09Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
ACESは146の言語ペアにまたがる対照的な課題セットです。
このデータセットは、メトリクスが68の翻訳精度の誤差を識別できるかどうかを調べることを目的としている。
我々は、WMT2022および2023のメトリクス共有タスクに提出された50のメトリクスに対して、ACESをベンチマークすることで、大規模な研究を行う。
論文 参考訳(メタデータ) (2024-01-29T17:17:42Z) - Grammatical Error Correction via Mixed-Grained Weighted Training [68.94921674855621]
文法的誤り訂正(英: Grammatical Error Correction, GEC)は、自然文における文法的誤りを自動的に補正することを目的としている。
MainGECは、データアノテーションの正確性と潜在的な多様性の固有の相違に基づいて、トークンレベルおよび文レベルトレーニングウェイトを設計する。
論文 参考訳(メタデータ) (2023-11-23T08:34:37Z) - MuLER: Detailed and Scalable Reference-based Evaluation [24.80921931416632]
そこで本研究では,テキスト生成のための基準ベース評価基準を細粒度解析ツールに変換する手法を提案する。
システムとメートル法が与えられたとき、MulERは選択されたメートル法が特定のエラータイプをどれだけ罰するかを定量化する。
我々は,MulERの有効性を実証し,その有用性を示すために,合成的および自然主義的な設定の両方で実験を行う。
論文 参考訳(メタデータ) (2023-05-24T10:26:13Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
大規模言語モデル(LLM)を用いて順序付けアノテーションと説明を再スケールする手法を提案する。
我々は、アノテータのLikert評価とそれに対応する説明をLLMに入力し、スコア付けルーリックに固定された数値スコアを生成する。
提案手法は,合意に影響を及ぼさずに生の判断を再スケールし,そのスコアを同一のスコア付けルーリックに接する人間の判断に近づける。
論文 参考訳(メタデータ) (2023-05-24T06:19:14Z) - CLEME: Debiasing Multi-reference Evaluation for Grammatical Error
Correction [32.44051877804761]
チャンクレベル多重参照評価(CLEME)は,多参照評価設定において文法誤り訂正(GEC)システムを評価するように設計されている。
我々は、CoNLL-2014共有タスクに基づく6つの英語参照セットの実験を行う。
論文 参考訳(メタデータ) (2023-05-18T08:57:17Z) - A Syntax-Guided Grammatical Error Correction Model with Dependency Tree
Correction [83.14159143179269]
文法的誤り訂正(英: Grammatical Error Correction, GEC)は、文中の文法的誤りを検出し、訂正するタスクである。
本稿では,依存木の構文知識を利用するためのグラフアテンション機構を採用した構文誘導型GECモデル(SG-GEC)を提案する。
我々は、GECタスクの公開ベンチマークでモデルを評価し、競争結果を得る。
論文 参考訳(メタデータ) (2021-11-05T07:07:48Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
既存の文法的誤り訂正(GEC)のアプローチは、手動で作成したGECデータセットによる教師あり学習に依存している。
誤りが不適切に編集されたり、修正されなかったりする「ノイズ」は無視できないほどある。
本稿では,既存のモデルの予測整合性を利用して,これらのデータセットをデノマイズする自己補充手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T04:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。