Learning Visuotactile Estimation and Control for Non-prehensile Manipulation under Occlusions
- URL: http://arxiv.org/abs/2412.13157v1
- Date: Tue, 17 Dec 2024 18:33:05 GMT
- Title: Learning Visuotactile Estimation and Control for Non-prehensile Manipulation under Occlusions
- Authors: Juan Del Aguila Ferrandis, João Moura, Sethu Vijayakumar,
- Abstract summary: Non-prehensile manipulation is essential for dexterous robots in contact-rich environments.
We present a method for learning visuotactile state estimators and uncertainty-aware control policies for non-prehensile manipulation under occlusions.
- Score: 10.866026182745397
- License:
- Abstract: Manipulation without grasping, known as non-prehensile manipulation, is essential for dexterous robots in contact-rich environments, but presents many challenges relating with underactuation, hybrid-dynamics, and frictional uncertainty. Additionally, object occlusions in a scenario of contact uncertainty and where the motion of the object evolves independently from the robot becomes a critical problem, which previous literature fails to address. We present a method for learning visuotactile state estimators and uncertainty-aware control policies for non-prehensile manipulation under occlusions, by leveraging diverse interaction data from privileged policies trained in simulation. We formulate the estimator within a Bayesian deep learning framework, to model its uncertainty, and then train uncertainty-aware control policies by incorporating the pre-learned estimator into the reinforcement learning (RL) loop, both of which lead to significantly improved estimator and policy performance. Therefore, unlike prior non-prehensile research that relies on complex external perception set-ups, our method successfully handles occlusions after sim-to-real transfer to robotic hardware with a simple onboard camera. See our video: https://youtu.be/hW-C8i_HWgs.
Related papers
- COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping [56.907940167333656]
Occluded robot grasping is where the desired grasp poses are kinematically infeasible due to environmental constraints such as surface collisions.
Traditional robot manipulation approaches struggle with the complexity of non-prehensile or bimanual strategies commonly used by humans.
We introduce Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a learning-based approach which leverages two coordinated policies.
arXiv Detail & Related papers (2025-02-12T01:31:01Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
We develop a fully-observable robot policy that generates supervision for a partially-observable one.
We deploy our policy on a physical quadruped robot with an RGB-D camera on pursuit-evasion interactions in the wild.
arXiv Detail & Related papers (2023-08-30T17:59:05Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Uncertainty-aware Contact-safe Model-based Reinforcement Learning [17.10030262602653]
We present contact-safe Model-based Reinforcement Learning (MBRL) for robot applications that achieves contact-safe behaviors in the learning process.
We associate the probabilistic Model Predictive Control's (pMPC) control limits with the model uncertainty so that the allowed acceleration of controlled behavior is adjusted according to learning progress.
arXiv Detail & Related papers (2020-10-16T05:11:25Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.