A Conformal Approach to Feature-based Newsvendor under Model Misspecification
- URL: http://arxiv.org/abs/2412.13159v1
- Date: Tue, 17 Dec 2024 18:34:43 GMT
- Title: A Conformal Approach to Feature-based Newsvendor under Model Misspecification
- Authors: Junyu Cao,
- Abstract summary: We propose a model-free and distribution-free framework inspired by conformal prediction.
We validate our framework using both simulated data and a real-world dataset from the Capital Bikeshare program in Washington, D.C.
- Score: 2.801095519296785
- License:
- Abstract: In many data-driven decision-making problems, performance guarantees often depend heavily on the correctness of model assumptions, which may frequently fail in practice. We address this issue in the context of a feature-based newsvendor problem, where demand is influenced by observed features such as demographics and seasonality. To mitigate the impact of model misspecification, we propose a model-free and distribution-free framework inspired by conformal prediction. Our approach consists of two phases: a training phase, which can utilize any type of prediction method, and a calibration phase that conformalizes the model bias. To enhance predictive performance, we explore the balance between data quality and quantity, recognizing the inherent trade-off: more selective training data improves quality but reduces quantity. Importantly, we provide statistical guarantees for the conformalized critical quantile, independent of the correctness of the underlying model. Moreover, we quantify the confidence interval of the critical quantile, with its width decreasing as data quality and quantity improve. We validate our framework using both simulated data and a real-world dataset from the Capital Bikeshare program in Washington, D.C. Across these experiments, our proposed method consistently outperforms benchmark algorithms, reducing newsvendor loss by up to 40% on the simulated data and 25% on the real-world dataset.
Related papers
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models [0.9940108090221528]
Aggregation strategies have been developed to pool or fuse the weights and biases of distributed deterministic models.
We show that simple application of the aggregation methods associated with FL schemes for deterministic models is either impossible or results in sub-optimal performance.
arXiv Detail & Related papers (2024-03-22T15:02:24Z) - Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy.
We present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets.
We introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness.
arXiv Detail & Related papers (2024-02-27T00:59:32Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
This paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs)
It applies both data-dependent or data-independent regularizers while optimizing over a variational distribution as in Bayesian learning.
Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
arXiv Detail & Related papers (2023-05-12T14:19:15Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - On the Role of Dataset Quality and Heterogeneity in Model Confidence [27.657631193015252]
Safety-critical applications require machine learning models that output accurate and calibrated probabilities.
Uncalibrated deep networks are known to make over-confident predictions.
We study the impact of dataset quality by studying the impact of dataset size and the label noise on the model confidence.
arXiv Detail & Related papers (2020-02-23T05:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.