CoCAI: Copula-based Conformal Anomaly Identification for Multivariate Time-Series
- URL: http://arxiv.org/abs/2507.17796v1
- Date: Wed, 23 Jul 2025 14:15:31 GMT
- Title: CoCAI: Copula-based Conformal Anomaly Identification for Multivariate Time-Series
- Authors: Nicholas A. Pearson, Francesca Zanello, Davide Russo, Luca Bortolussi, Francesca Cairoli,
- Abstract summary: We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to deliver accurate predictions and enable robust anomaly detection.
- Score: 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to address two critical challenges in multivariate time-series analysis: delivering accurate predictions and enabling robust anomaly detection. Our method, Copula-based Conformal Anomaly Identification for Multivariate Time-Series (CoCAI), leverages a diffusion-based model to capture complex dependencies within the data, enabling high quality forecasting. The model's outputs are further calibrated using a conformal prediction technique, yielding predictive regions which are statistically valid, i.e., cover the true target values with a desired confidence level. Starting from these calibrated forecasts, robust outlier detection is performed by combining dimensionality reduction techniques with copula-based modeling, providing a statistically grounded anomaly score. CoCAI benefits from an offline calibration phase that allows for minimal overhead during deployment and delivers actionable results rooted in established theoretical foundations. Empirical tests conducted on real operational data derived from water distribution and sewerage systems confirm CoCAI's effectiveness in accurately forecasting target sequences of data and in identifying anomalous segments within them.
Related papers
- Diffusion-based Time Series Forecasting for Sewerage Systems [0.3495246564946556]
We introduce a novel deep learning approach to enhance the accuracy of contextual forecasting in sewerage systems.<n>Our system excels at capturing complex correlations across diverse environmental signals, enabling robust predictions even during extreme weather events.<n>Our empirical tests on real sewerage system data confirm the model's exceptional capability to deliver reliable contextual predictions.
arXiv Detail & Related papers (2025-06-10T08:48:05Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - A Conformal Approach to Feature-based Newsvendor under Model Misspecification [2.801095519296785]
We propose a model-free and distribution-free framework inspired by conformal prediction.<n>We validate our framework using both simulated data and a real-world dataset from the Capital Bikeshare program in Washington, D.C.
arXiv Detail & Related papers (2024-12-17T18:34:43Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
We develop a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees.
We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator.
arXiv Detail & Related papers (2021-05-27T00:59:29Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.