Training Verification-Friendly Neural Networks via Neuron Behavior Consistency
- URL: http://arxiv.org/abs/2412.13229v2
- Date: Sun, 29 Dec 2024 13:48:34 GMT
- Title: Training Verification-Friendly Neural Networks via Neuron Behavior Consistency
- Authors: Zongxin Liu, Zhe Zhao, Fu Song, Jun Sun, Pengfei Yang, Xiaowei Huang, Lijun Zhang,
- Abstract summary: This work introduces a novel method for training verification-friendly neural networks.
Our method integrates neuron behavior consistency into the training process.
We show that our method can be combined with existing approaches to further improve the verifiability of networks.
- Score: 20.461738506282504
- License:
- Abstract: Formal verification provides critical security assurances for neural networks, yet its practical application suffers from the long verification time. This work introduces a novel method for training verification-friendly neural networks, which are robust, easy to verify, and relatively accurate. Our method integrates neuron behavior consistency into the training process, making neuron activation states remain consistent across different inputs within a local neighborhood. This reduces the number of unstable neurons and tightens the bounds of neurons thereby enhancing the network's verifiability. We evaluated our method using the MNIST, Fashion-MNIST, and CIFAR-10 datasets with various network architectures. The experimental results demonstrate that networks trained using our method are verification-friendly across different radii and architectures, whereas other tools fail to maintain verifiability as the radius increases. Additionally, we show that our method can be combined with existing approaches to further improve the verifiability of networks.
Related papers
- Certified Continual Learning for Neural Network Regression [5.196348925724883]
We propose an approach called certified continual learning.
It improves existing continual learning methods by preserving, as long as possible, the established correctness properties of a verified network.
The results show that our approach is efficient and the trained models preserve their certified correctness and often maintain high utility.
arXiv Detail & Related papers (2024-07-09T09:14:45Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Expediting Neural Network Verification via Network Reduction [4.8621567234713305]
We propose a network reduction technique as a pre-processing method prior to verification.
The proposed method reduces neural networks via eliminating stable ReLU neurons, and transforming them into a sequential neural network.
We instantiate the reduction technique on the state-of-the-art complete and incomplete verification tools.
arXiv Detail & Related papers (2023-08-07T06:23:24Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Towards Repairing Neural Networks Correctly [6.600380575920419]
We propose a runtime verification method to ensure the correctness of neural networks.
Experiment results show that our approach effectively generates neural networks which are guaranteed to satisfy the properties.
arXiv Detail & Related papers (2020-12-03T12:31:07Z) - An SMT-Based Approach for Verifying Binarized Neural Networks [1.4394939014120451]
We propose an SMT-based technique for verifying Binarized Neural Networks.
One novelty of our technique is that it allows the verification of neural networks that include both binarized and non-binarized components.
We implement our technique as an extension to the Marabou framework, and use it to evaluate the approach on popular binarized neural network architectures.
arXiv Detail & Related papers (2020-11-05T16:21:26Z) - Verifying Recurrent Neural Networks using Invariant Inference [0.0]
We propose a novel approach for verifying properties of a widespread variant of neural networks, called recurrent neural networks.
Our approach is based on the inference of invariants, which allow us to reduce the complex problem of verifying recurrent networks into simpler, non-recurrent problems.
arXiv Detail & Related papers (2020-04-06T08:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.