論文の概要: COSEE: Consistency-Oriented Signal-Based Early Exiting via Calibrated Sample Weighting Mechanism
- arxiv url: http://arxiv.org/abs/2412.13236v1
- Date: Tue, 17 Dec 2024 16:24:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:56.541739
- Title: COSEE: Consistency-Oriented Signal-Based Early Exiting via Calibrated Sample Weighting Mechanism
- Title(参考訳): COSEE: キャリブレーションされたサンプル重み付け機構による一貫性指向信号ベース早期出力
- Authors: Jianing He, Qi Zhang, Hongyun Zhang, Xuanjing Huang, Usman Naseem, Duoqian Miao,
- Abstract要約: 早期終了は事前学習言語モデル(PLM)の推論効率を改善する効果的なパラダイムである
本稿では,COSEE(Consistency-Oriented Signal-based Early Exiting)フレームワークを提案する。
GLUEベンチマークの実験では、複数の出口信号とバックボーンにまたがるCOSEEの有効性が実証され、パフォーマンスと効率のトレードオフが向上した。
- 参考スコア(独自算出の注目度): 32.015402521706825
- License:
- Abstract: Early exiting is an effective paradigm for improving the inference efficiency of pre-trained language models (PLMs) by dynamically adjusting the number of executed layers for each sample. However, in most existing works, easy and hard samples are treated equally by each classifier during training, which neglects the test-time early exiting behavior, leading to inconsistency between training and testing. Although some methods have tackled this issue under a fixed speed-up ratio, the challenge of flexibly adjusting the speed-up ratio while maintaining consistency between training and testing is still under-explored. To bridge the gap, we propose a novel Consistency-Oriented Signal-based Early Exiting (COSEE) framework, which leverages a calibrated sample weighting mechanism to enable each classifier to emphasize the samples that are more likely to exit at that classifier under various acceleration scenarios. Extensive experiments on the GLUE benchmark demonstrate the effectiveness of our COSEE across multiple exiting signals and backbones, yielding a better trade-off between performance and efficiency.
- Abstract(参考訳): 早期終了は,各サンプルに対して実行層数を動的に調整することにより,事前学習言語モデル(PLM)の推論効率を向上させるための有効なパラダイムである。
しかし、既存のほとんどの作品では、トレーニング中に各分類器によって容易で硬いサンプルが等しく扱われ、テストタイムの早期終了動作は無視されるため、トレーニングとテストの矛盾が生じる。
一定のスピードアップ比でこの問題に取り組む方法もあるが、トレーニングとテストの整合性を保ちながら速度アップ比を柔軟に調整するという課題はまだ未解決のままである。
このギャップを埋めるために, キャリブレーションされたサンプル重み付け機構を活用して, 様々なアクセラレーションシナリオ下で, その分類器から出る可能性が高いサンプルを各分類器が強調できるようにする, 一貫性指向信号ベース早期実行(COSEE)フレームワークを提案する。
GLUEベンチマークの大規模な実験は、複数の出口信号とバックボーンにまたがるCOSEEの有効性を示し、パフォーマンスと効率のトレードオフをより良くします。
関連論文リスト
- Enhancing Sample Selection by Cutting Mislabeled Easy Examples [62.13094877228772]
トレーニングプロセスの初期段階において,モデルによって正しく予測された誤ラベル例は,特にモデル性能に有害であることを示す。
モデルの後続のトレーニング状態を利用して,早期に同定された自信あるサブセットを再選択するアーリーカットを提案する。
論文 参考訳(メタデータ) (2025-02-12T09:12:45Z) - Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation [3.8959351616076745]
フローマッチングは、生成モデルをトレーニングするための有望なフレームワークとして登場した。
本稿では, 整合性モデルと対向学習を統合した自己補正型流動蒸留法を提案する。
この研究は、数ステップと1ステップのサンプリングで一貫した生成品質を達成するための先駆者である。
論文 参考訳(メタデータ) (2024-12-22T07:48:49Z) - Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders [101.42201747763178]
未学習例(UE)は、正しくラベル付けされたトレーニング例に微妙な修正を加えることで、テストエラーの最大化を目指している。
我々の研究は、効率的な事前学習浄化法を構築するための、新しいゆがみ機構を提供する。
論文 参考訳(メタデータ) (2024-05-02T16:49:25Z) - Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
アウト・オブ・ディストリビューション(Out-of-distriion)サンプルは、トレーニング分布と比較して、局所的またはグローバルな特徴の変化を示す可能性がある。
本稿では,新しいフレームワーク,Multitesting-based Layer-wise Out-of-Distribution (OOD) を提案する。
本手法は, ベースライン法と比較して, 分布外検出の性能を効果的に向上させる。
論文 参考訳(メタデータ) (2024-03-16T04:35:04Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Generalized Robust Test-Time Adaptation in Continuous Dynamic Scenarios [18.527640606971563]
テスト時間適応(TTA)は、未ラベルのテストデータストリームのみを使用する推論フェーズにおいて、事前訓練されたモデルに分散をテストする。
本稿では,問題に効果的に対応する汎用ロバストテスト時間適応(GRoTTA)法を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:13:49Z) - Learning to Weight Samples for Dynamic Early-exiting Networks [35.03752825893429]
早期退避は、ディープネットワークの推論効率を改善するための効果的なパラダイムである。
本研究は,各出口で異なるトレーニングサンプルの損失を重み付けするために,重み予測ネットワークを採用することを提案する。
提案する重み付け機構は,分類精度と推論効率のトレードオフを一貫して改善することを示す。
論文 参考訳(メタデータ) (2022-09-17T10:46:32Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
本稿では,事前学習した言語モデルの効率性と堅牢性を向上させるためのプラグイン・アンド・プレイ手法として,Patience-based Early Exitを提案する。
提案手法では,モデルを少ないレイヤで予測できるため,推論効率が向上する。
論文 参考訳(メタデータ) (2020-06-07T13:38:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。