論文の概要: Automated Phytosensing: Ozone Exposure Classification Based on Plant Electrical Signals
- arxiv url: http://arxiv.org/abs/2412.13312v1
- Date: Tue, 17 Dec 2024 20:29:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:47:40.674701
- Title: Automated Phytosensing: Ozone Exposure Classification Based on Plant Electrical Signals
- Title(参考訳): 自動植物センシング:植物電気信号に基づくオゾン暴露分類
- Authors: Till Aust, Eduard Buss, Felix Mohr, Heiko Hamann,
- Abstract要約: 本研究では, 生物の分散ネットワークを空気質センサとして利用し, その電気生理学的な測定を行い, 環境状態を推定することを提案する。
本手法は, 植物オゾン曝露を94.6%の精度で未確認データで分類することに成功した。
本研究は, コスト効率の高い高密度都市大気モニタリングシステムの開発に寄与する植物センシング装置の開発に有効である。
- 参考スコア(独自算出の注目度): 10.274619512179882
- License:
- Abstract: In our project WatchPlant, we propose to use a decentralized network of living plants as air-quality sensors by measuring their electrophysiology to infer the environmental state, also called phytosensing. We conducted in-lab experiments exposing ivy (Hedera helix) plants to ozone, an important pollutant to monitor, and measured their electrophysiological response. However, there is no well established automated way of detecting ozone exposure in plants. We propose a generic automatic toolchain to select a high-performance subset of features and highly accurate models for plant electrophysiology. Our approach derives plant- and stimulus-generic features from the electrophysiological signal using the tsfresh library. Based on these features, we automatically select and optimize machine learning models using AutoML. We use forward feature selection to increase model performance. We show that our approach successfully classifies plant ozone exposure with accuracies of up to 94.6% on unseen data. We also show that our approach can be used for other plant species and stimuli. Our toolchain automates the development of monitoring algorithms for plants as pollutant monitors. Our results help implement significant advancements for phytosensing devices contributing to the development of cost-effective, high-density urban air monitoring systems in the future.
- Abstract(参考訳): 本プロジェクトでは,植物センシング(phytosensing,phytosensing)と呼ばれる環境状態を推定するために,その電気生理学的な測定を行うことにより,生物の分散ネットワークを空気質センサとして利用することを提案する。
オゾンにイチジク(ヘデラヘリックス)の植物を曝露する実験を行い,その電気生理学的反応を測定した。
しかし、植物のオゾン曝露を自動的に検出する方法は確立されていない。
植物電気生理学における高性能な機能サブセットと高精度なモデルを選択するための汎用的な自動ツールチェーンを提案する。
本手法は, tsfreshライブラリを用いた電気生理学的信号から植物および刺激遺伝子の特徴を導出する。
これらの特徴に基づき、AutoMLを使用して機械学習モデルを自動的に選択し、最適化する。
モデル性能を向上させるために、前方機能選択を使用します。
本手法は, 植物オゾン曝露を94.6%の精度で未確認データで分類することに成功した。
また,本手法が他の植物種や刺激にも有効であることを示す。
我々のツールチェーンは、汚染物質モニターとして植物のモニタリングアルゴリズムの開発を自動化する。
本研究は,将来,コスト効率の高い高密度都市大気モニタリングシステムの開発に寄与する植物センシング装置の大幅な進歩を実現するのに有効である。
関連論文リスト
- RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing [2.1038216828914145]
葉レベルハイパースペクトル分光法は、表現型化、作物の健康のモニタリング、植物中の必須栄養素の同定、病気や水ストレスの検出に強力なツールであることが示されている。
この研究は、果樹園操作のためのロボット操作ユニットであるRoMu4oを紹介した。
論文 参考訳(メタデータ) (2025-01-18T01:04:02Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage [0.0]
本研究では,アクセス可能なカメラで撮影した映像を用いて,街路植物の自動診断を行うAIシステムを提案する。
本システムは,都市部における病気のコントロールを支援するため,日常的に植物の健康をモニタリングすることを目的としている。
その結果, 葉の損傷診断におけるシステムの堅牢性と精度が示され, 大規模都会の植物病モニタリングにも応用できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-03T07:11:18Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
農業生産は今後数十年間、気候変動と持続可能性の必要性によって深刻な課題に直面している。
自律無人航空機(UAV)による作物のモニタリングと、ロボットによる非化学雑草によるフィールド管理の進歩は、これらの課題に対処するのに有用である。
表現型化と呼ばれる植物形質の分析は、植物の育種に不可欠な活動であるが、大量の手作業が伴う。
論文 参考訳(メタデータ) (2023-12-22T14:06:44Z) - Development of IoT Smart Greenhouse System for Hydroponic Gardens [0.0]
SMART温室システム(SMART Greenhouse System for Hydroponic Garden)は、気候変動、土地不足、低農業環境による食糧不足に対する代替手段、解決策および革新技術として使用されている。
ISO 9126の評価基準に基づき, 信頼性, 機能, ユーザビリティを検証し, 評価した。
提案者は、ポンプパワーに太陽エネルギーを使うこと、プロトタイプの配線の改善、より多くのセンサーやデバイスに対処するためのArduinoのハイエンドモデルの使用、安全性を確保するためのデバイスの囲い、バグ修正やアタッチメントなどのモバイルアプリケーションのアップデートを強く推奨している。
論文 参考訳(メタデータ) (2023-05-02T03:47:25Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Detecting broken Absorber Tubes in CSP plants using intelligent sampling
and dual loss [0.0]
集中型太陽光発電(CSP)は化石燃料から再生可能エネルギーへの転換を導く技術である。
現在、パラボリック・トラフ・コレクター・システムによるCSPプラントの自動故障検出は、2つの主な欠点を証明している。
我々は、抽出されたデータと無人航空機の使用、および7つの実工場に設置されたセンサーによって提供されるデータを組み合わせることで、両方のギャップに対処する。
論文 参考訳(メタデータ) (2022-11-25T12:53:52Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
我々は、カートポールエージェントを制御するために、ニューラルセルオートマトンを使用する。
我々は、Q値の推定値として出力セルの状態を用いる深層学習を用いてモデルを訓練した。
論文 参考訳(メタデータ) (2021-06-29T10:49:42Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
スパイクセントラルパターンジェネレーターは、外部刺激によって駆動される異なる移動パターンを生成します。
終端ロボットプラットフォーム(あらゆる脚ロボット)の移動は、任意のセンサーを入力として地形に適応することができる。
論文 参考訳(メタデータ) (2021-01-24T12:44:38Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
相関情報を利用するスケジューリング機構を提案する。
提案したメカニズムは、センサが更新を送信する頻度を決定することができる。
我々は,センサの寿命を大幅に延長できることを示した。
論文 参考訳(メタデータ) (2020-11-19T09:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。