論文の概要: Self-supervised learning predicts plant growth trajectories from multi-modal industrial greenhouse data
- arxiv url: http://arxiv.org/abs/2507.06336v1
- Date: Tue, 08 Jul 2025 18:55:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.362525
- Title: Self-supervised learning predicts plant growth trajectories from multi-modal industrial greenhouse data
- Title(参考訳): マルチモーダル産業用温室データを用いた自己教師付き学習による植物成長軌跡の予測
- Authors: Adam J Riesselman, Evan M Cofer, Therese LaRue, Wim Meeussen,
- Abstract要約: 本研究では,大規模ヒドロポニック葉緑体の高分解能環境センシングと表現型計測に移動型ロボットプラットフォームを用いた。
植物の成長軌跡全体への観察された成長データからマップを構築するための自己教師付きモデリング手法について述べる。
- 参考スコア(独自算出の注目度): 0.29998889086656577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantifying organism-level phenotypes, such as growth dynamics and biomass accumulation, is fundamental to understanding agronomic traits and optimizing crop production. However, quality growing data of plants at scale is difficult to generate. Here we use a mobile robotic platform to capture high-resolution environmental sensing and phenotyping measurements of a large-scale hydroponic leafy greens system. We describe a self-supervised modeling approach to build a map from observed growing data to the entire plant growth trajectory. We demonstrate our approach by forecasting future plant height and harvest mass of crops in this system. This approach represents a significant advance in combining robotic automation and machine learning, as well as providing actionable insights for agronomic research and operational efficiency.
- Abstract(参考訳): 成長動態やバイオマス蓄積などの生物レベルの表現型を定量化することは、農業特性を理解し、作物生産を最適化する基礎となる。
しかし、大規模に植物を育てていくことは困難である。
ここでは,大規模水耕性葉緑体の高分解能環境センシングと表現型計測を行うために,移動ロボットプラットフォームを用いる。
植物の成長軌跡全体への観察された成長データからマップを構築するための自己教師付きモデリング手法について述べる。
本システムでは,今後の植物の高さと作物の収穫量を予測することによって,我々のアプローチを実証する。
このアプローチは、ロボット自動化と機械学習を組み合わせる上で重要な進歩であり、農業研究と運用効率のための実用的な洞察を提供する。
関連論文リスト
- Multimodal Data Integration for Sustainable Indoor Gardening: Tracking Anyplant with Time Series Foundation Model [9.8186542545443]
本稿では,コンピュータビジョン,機械学習(ML),環境センシングを統合し,植物の健康と成長を自動監視する新しいフレームワークを提案する。
従来のアプローチとは異なり、このフレームワークは、RGB画像、植物表現型データ、温度や湿度などの環境要因を組み合わせて、制御された生育環境における植物水ストレスを予測する。
論文 参考訳(メタデータ) (2025-03-27T19:19:37Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点をあてる。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
論文 参考訳(メタデータ) (2024-07-11T08:23:46Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
農業生産は今後数十年間、気候変動と持続可能性の必要性によって深刻な課題に直面している。
自律無人航空機(UAV)による作物のモニタリングと、ロボットによる非化学雑草によるフィールド管理の進歩は、これらの課題に対処するのに有用である。
表現型化と呼ばれる植物形質の分析は、植物の育種に不可欠な活動であるが、大量の手作業が伴う。
論文 参考訳(メタデータ) (2023-12-22T14:06:44Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
サービスロボットは、周囲を理解し、野生のターゲットを識別するリアルタイム認識システムが必要です。
しかし、既存の方法はしばしば、新しい作物や環境条件への一般化において不足している。
本稿では,知識蒸留を用いた領域一般化手法を提案する。
論文 参考訳(メタデータ) (2023-04-03T14:28:29Z) - A Learned Simulation Environment to Model Plant Growth in Indoor Farming [0.0]
精密農業における環境パラメータの変化が植物の成長に及ぼす影響を定量化するシミュレータを開発した。
我々のアプローチは、植物画像の処理と深部畳み込みニューラルネットワーク(CNN)、成長曲線モデリング、機械学習を組み合わせる。
論文 参考訳(メタデータ) (2022-12-06T17:28:13Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Temporal Prediction and Evaluation of Brassica Growth in the Field using
Conditional Generative Adversarial Networks [1.2926587870771542]
植物の成長予測は、多種多様な環境要因によって影響を受けるため、大きな課題である。
本稿では,高スループット撮像センサ測定とその自動解析を含む新しいモニタリング手法を提案する。
提案手法のコアは条件付き生成型adversarial networkに基づく新しい機械学習ベースの成長モデルである。
論文 参考訳(メタデータ) (2021-05-17T13:00:01Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。