Automated Phytosensing: Ozone Exposure Classification Based on Plant Electrical Signals
- URL: http://arxiv.org/abs/2412.13312v1
- Date: Tue, 17 Dec 2024 20:29:00 GMT
- Title: Automated Phytosensing: Ozone Exposure Classification Based on Plant Electrical Signals
- Authors: Till Aust, Eduard Buss, Felix Mohr, Heiko Hamann,
- Abstract summary: We propose to use a decentralized network of living plants as air-quality sensors by measuring their electrophysiology to infer the environmental state.
We show that our approach successfully classifies plant ozone exposure with accuracies of up to 94.6% on unseen data.
Our results help implement significant advancements for phytosensing devices contributing to the development of cost-effective, high-density urban air monitoring systems.
- Score: 10.274619512179882
- License:
- Abstract: In our project WatchPlant, we propose to use a decentralized network of living plants as air-quality sensors by measuring their electrophysiology to infer the environmental state, also called phytosensing. We conducted in-lab experiments exposing ivy (Hedera helix) plants to ozone, an important pollutant to monitor, and measured their electrophysiological response. However, there is no well established automated way of detecting ozone exposure in plants. We propose a generic automatic toolchain to select a high-performance subset of features and highly accurate models for plant electrophysiology. Our approach derives plant- and stimulus-generic features from the electrophysiological signal using the tsfresh library. Based on these features, we automatically select and optimize machine learning models using AutoML. We use forward feature selection to increase model performance. We show that our approach successfully classifies plant ozone exposure with accuracies of up to 94.6% on unseen data. We also show that our approach can be used for other plant species and stimuli. Our toolchain automates the development of monitoring algorithms for plants as pollutant monitors. Our results help implement significant advancements for phytosensing devices contributing to the development of cost-effective, high-density urban air monitoring systems in the future.
Related papers
- RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing [2.1038216828914145]
Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress.
This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing.
arXiv Detail & Related papers (2025-01-18T01:04:02Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage [0.0]
This study introduces an AI-based system for the automatic diagnosis of urban street plants using video footage obtained with accessible camera devices.
The system aims to monitor plant health on a day-to-day basis, aiding in the control of disease spreading in urban areas.
The results demonstrate the robustness and accuracy of the system in diagnosing leaf damage, with potential applications in large scale urban flora illness monitoring.
arXiv Detail & Related papers (2024-07-03T07:11:18Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Development of IoT Smart Greenhouse System for Hydroponic Gardens [0.0]
The SMART Greenhouse System for Hydroponic Garden is used as an alternative tool, solution, and innovation technique towards food shortages due to climate change, land shortages, and low farming environments.
The developed system was tested and evaluated to confirm its reliability, functions, and usability under ISO 9126 evaluation criteria.
The proponents highly suggest the use of solar energy for the pump power, prototype wiring should be improved, the usage of a high-end model of Arduino to address more sensors and devices for a larger arsenal of data collected, enclosures of the device to ensure safety, and mobile application updates such as bug fixes and have an
arXiv Detail & Related papers (2023-05-02T03:47:25Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Detecting broken Absorber Tubes in CSP plants using intelligent sampling
and dual loss [0.0]
Concentrated solar power (CSP) is one of the growing technologies that is leading the process of changing from fossil fuels to renewable energies.
Currently, automatic fault detection in CSP plants using Parabolic Trough Collector systems evidences two main drawbacks.
We address both gaps by combining the data extracted with the use of an Unmaned Aerial Vehicle, and the data provided by sensors placed within 7 real plants.
arXiv Detail & Related papers (2022-11-25T12:53:52Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
We use neural cellular automata to control a cart-pole agent.
We trained the model using deep-Q learning, where the states of the output cells were used as the Q-value estimates to be optimized.
arXiv Detail & Related papers (2021-06-29T10:49:42Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.