A note on quantum lower bounds for local search via congestion and expansion
- URL: http://arxiv.org/abs/2412.13345v1
- Date: Tue, 17 Dec 2024 21:42:42 GMT
- Title: A note on quantum lower bounds for local search via congestion and expansion
- Authors: Simina Brânzei, Nicholas J. Recker,
- Abstract summary: We show that the quantum query complexity of local search on $G$ is $Omegabigl( fracnfrac34sqrtg bigr)$.
In contrast to the classical setting, a gap remains in the quantum case between our lower bound and the best-known upper bound of $Obigl( nfrac13 bigr)$ for such graphs.
- Score: 4.68073705539907
- License:
- Abstract: We consider the quantum query complexity of local search as a function of graph geometry. Given a graph $G = (V,E)$ with $n$ vertices and black box access to a function $f : V \to \mathbb{R}$, the goal is find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few oracle queries as possible. We show that the quantum query complexity of local search on $G$ is $\Omega\bigl( \frac{n^{\frac{3}{4}}}{\sqrt{g}} \bigr)$, where $g$ is the vertex congestion of the graph. For a $\beta$-expander with maximum degree $\Delta$, this implies a lower bound of $ \Omega\bigl(\frac{\sqrt{\beta} \; n^{\frac{1}{4}}}{\sqrt{\Delta} \; \log{n}} \bigr)$. We obtain these bounds by applying the strong weighted adversary method to a construction by Br\^anzei, Choo, and Recker (2024). As a corollary, on constant degree expanders, we derive a lower bound of $\Omega\bigl(\frac{n^{\frac{1}{4}}}{ \sqrt{\log{n}}} \bigr)$. This improves upon the best prior quantum lower bound of $\Omega\bigl( \frac{n^{\frac{1}{8}}}{\log{n}}\bigr) $ by Santha and Szegedy (2004). In contrast to the classical setting, a gap remains in the quantum case between our lower bound and the best-known upper bound of $O\bigl( n^{\frac{1}{3}} \bigr)$ for such graphs.
Related papers
- Quantum Algorithms and Lower Bounds for Finite-Sum Optimization [22.076317220348145]
We give a quantum algorithm with complexity $tildeObig(n+sqrtd+sqrtell/mubig)$, improving the classical tight bound $tildeThetabig(n+sqrtnell/mubig)$.
We also prove a quantum lower bound $tildeOmega(n+n3/4(ell/mu)1/4)$ when $d$ is large enough.
arXiv Detail & Related papers (2024-06-05T07:13:52Z) - A quantum algorithm for learning a graph of bounded degree [1.8130068086063336]
We present an algorithm that learns the edges of $G$ in at most $tildeO(d2m3/4)$ quantum queries.
In particular, we present a randomized algorithm that, with high probability, learns cycles and matchings in $tildeO(sqrtm)$ quantum queries.
arXiv Detail & Related papers (2024-02-28T21:23:40Z) - Quantum and classical query complexities of functions of matrices [0.0]
We show that for any continuous function $f(x):[-1,1]rightarrow [-1,1]$, the quantum query complexity of computing $brai f(A) ketjpm varepsilon/4$ is lower bounded by $Omega(widetildedeg_varepsilon(f))$.
arXiv Detail & Related papers (2023-11-13T00:45:41Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z) - Degree vs. Approximate Degree and Quantum Implications of Huang's
Sensitivity Theorem [4.549831511476248]
We show that for any total Boolean function $f$, $bullet quad mathrmdeg(f) = O(widetildemathrmdeg(f)2)$: The degree of $f$ is at mosttrivial quadratic in the approximate degree of $f$.
We show that if $f$ is a non monotone graph property of an $n$-vertex graph specified by its adjacency matrix, then $mathrmQ(f)=Omega(n)$, which is also optimal.
arXiv Detail & Related papers (2020-10-23T19:21:28Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language [1.0118253437732931]
We study the quantum query complexity of two problems.
We consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing.
By embedding the "balanced parentheses" problem into the grid, we show a lower bound of $Omega(n1.5-epsilon)$ for the directed 2D grid and $Omega(n2-epsilon)$ for the undirected 2D grid.
arXiv Detail & Related papers (2020-07-06T09:51:41Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.