論文の概要: A Novel Machine Learning Classifier Based on Genetic Algorithms and Data Importance Reformatting
- arxiv url: http://arxiv.org/abs/2412.13350v1
- Date: Tue, 17 Dec 2024 21:54:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:50:05.063188
- Title: A Novel Machine Learning Classifier Based on Genetic Algorithms and Data Importance Reformatting
- Title(参考訳): 遺伝的アルゴリズムとデータ重要度修正に基づく新しい機械学習分類器
- Authors: A. K. Alkhayyata, N. M. Hewahi,
- Abstract要約: データの性質に関わる問題を克服するためにGADICという遺伝的アルゴリズムが提案されている。
GADICはデータ再構成、トレーニング、テストの3つのフェーズで構成されている。
GADICは様々なデータセットを用いたほとんどのML分類器の性能を大幅に向上させた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, a novel classification algorithm that is based on Data Importance (DI) reformatting and Genetic Algorithms (GA) named GADIC is proposed to overcome the issues related to the nature of data which may hinder the performance of the Machine Learning (ML) classifiers. GADIC comprises three phases which are data reformatting phase which depends on DI concept, training phase where GA is applied on the reformatted training dataset, and testing phase where the instances of the reformatted testing dataset are being averaged based on similar instances in the training dataset. GADIC is an approach that utilizes the exiting ML classifiers with involvement of data reformatting, using GA to tune the inputs, and averaging the similar instances to the unknown instance. The averaging of the instances becomes the unknown instance to be classified in the stage of testing. GADIC has been tested on five existing ML classifiers which are Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Logistic Regression (LR), Decision Tree (DT), and Na\"ive Bayes (NB). All were evaluated using seven open-source UCI ML repository and Kaggle datasets which are Cleveland heart disease, Indian liver patient, Pima Indian diabetes, employee future prediction, telecom churn prediction, bank customer churn, and tech students. In terms of accuracy, the results showed that, with the exception of approximately 1% decrease in the accuracy of NB classifier in Cleveland heart disease dataset, GADIC significantly enhanced the performance of most ML classifiers using various datasets. In addition, KNN with GADIC showed the greatest performance gain when compared with other ML classifiers with GADIC followed by SVM while LR had the lowest improvement. The lowest average improvement that GADIC could achieve is 5.96%, whereas the maximum average improvement reached 16.79%.
- Abstract(参考訳): 本稿では,データ重要度(DI)に基づく新しい分類アルゴリズムであるGADICを提案し,機械学習(ML)分類器の性能を損なう可能性のあるデータの性質に関わる問題を克服する。
GADICは、DI概念に依存するデータ改質フェーズである3つのフェーズと、改質されたトレーニングデータセットにGAを適用するトレーニングフェーズと、改質されたテストデータセットのインスタンスがトレーニングデータセットの同様のインスタンスに基づいて平均化されているテストフェーズとから構成される。
GADICは、データリカッティングに関わり、GAを使用して入力をチューニングし、類似のインスタンスを未知のインスタンスに平均化する、出口ML分類器を利用するアプローチである。
インスタンスの平均化は、テストの段階で分類される未知のインスタンスになる。
GADICは、SVM(Support Vector Machine)、KNN(K-Nearest Neighbour)、LR(Logistic Regression)、DT(Decision Tree)、NB(Na\"ive Bayes")の5つの既存のML分類器でテストされている。
すべては、7つのオープンソースのUCI MLリポジトリと、クリーブランド心臓病、インドの肝臓患者、ピマ・インディアンの糖尿病、従業員の将来予測、テレコムのチャーン予測、銀行の顧客チャーン予測、テクノロジーの学生といったKaggleデータセットを使用して評価された。
その結果, クリーブランド心疾患データセットにおけるNB分類器の精度は, 約1%低下したが, GADICは各種データセットを用いたほとんどのML分類器の性能を著しく向上させた。
さらに、GADICを用いたKNNでは、他のML分類器と比較すると最大の性能向上を示した。
GADICが達成した最も低い平均改善は5.96%であり、最大の平均改善は16.79%に達した。
関連論文リスト
- Electroencephalogram Emotion Recognition via AUC Maximization [0.0]
不均衡データセットは神経科学、認知科学、医学診断などの分野で大きな課題を提起する。
本研究は,DEAPデータセットにおけるライキングラベルを例として,イシュークラスの不均衡に対処する。
論文 参考訳(メタデータ) (2024-08-16T19:08:27Z) - Enhancing Heterogeneous Knowledge Graph Completion with a Novel GAT-based Approach [3.8357926394952306]
異種知識グラフのための新しいGATベースの知識グラフ補完法を提案する。
GATHには2つの異なるアテンションネットワークモジュールが組み込まれている。
我々のモデルは、FB15K-237データセットで5.2%と5.2%、WN18RRデータセットで4.5%と14.6%の性能を改善する。
論文 参考訳(メタデータ) (2024-08-05T13:28:51Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Rapid Adaptation in Online Continual Learning: Are We Evaluating It
Right? [135.71855998537347]
オンライン連続学習(OCL)アルゴリズムの適応性を評価するための一般的な手法を,オンライン精度の指標を用いて再検討する。
空白のブラインド分類器でさえ、非現実的に高いオンライン精度を達成できるため、この指標は信頼できない。
既存のOCLアルゴリズムは、オンラインの精度も高いが、有用な情報の保持は不十分である。
論文 参考訳(メタデータ) (2023-05-16T08:29:33Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - A Case Study on the Classification of Lost Circulation Events During
Drilling using Machine Learning Techniques on an Imbalanced Large Dataset [0.0]
イランのアザデガン油田から得られた65,000以上のデータと階級不均衡問題を利用する。
データセットの17のパラメータのうち11は、5つの失われた循環イベントの分類に使用される。
分類モデルを生成するために,6つの基本機械学習アルゴリズムと4つのアンサンブル学習手法を用いた。
論文 参考訳(メタデータ) (2022-09-04T12:28:40Z) - IB-GAN: A Unified Approach for Multivariate Time Series Classification
under Class Imbalance [1.854931308524932]
GAN(Generative Adversarial Networks)による非パラメトリックデータ拡張は、有望なソリューションを提供する。
本稿では,データ拡張と分類を1段階のプロセスで結合する新しい手法であるImputation Balanced GAN(IB-GAN)を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:31:16Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Transfer Learning and SpecAugment applied to SSVEP Based BCI
Classification [1.9336815376402716]
我々は、ディープ畳み込みニューラルネットワーク(DCNN)を使用して、単一チャネル脳-コンピュータインタフェース(BCI)で脳波信号を分類する。
脳波信号はスペクトログラムに変換され、転送学習技術を用いてDCNNを訓練するための入力として機能した。
論文 参考訳(メタデータ) (2020-10-08T00:30:12Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。