Wind Speed Forecasting Based on Data Decomposition and Deep Learning Models: A Case Study of a Wind Farm in Saudi Arabia
- URL: http://arxiv.org/abs/2412.13356v1
- Date: Tue, 17 Dec 2024 22:04:46 GMT
- Title: Wind Speed Forecasting Based on Data Decomposition and Deep Learning Models: A Case Study of a Wind Farm in Saudi Arabia
- Authors: Yasmeen Aldossary, Nabil Hewahi, Abdulla Alasaadi,
- Abstract summary: Wind power generation is always accompanied by uncertainty due to the wind speed's volatility.
Wind speed forecasting (WSF) is essential for power grids' dispatch, stability, and controllability.
This study proposes a novel WSF framework for stationary data based on a hybrid decomposition method.
- Score: 0.0
- License:
- Abstract: With industrial and technological development and the increasing demand for electric power, wind energy has gradually become the fastest-growing and most environmentally friendly new energy source. Nevertheless, wind power generation is always accompanied by uncertainty due to the wind speed's volatility. Wind speed forecasting (WSF) is essential for power grids' dispatch, stability, and controllability, and its accuracy is crucial to effectively using wind resources. Therefore, this study proposes a novel WSF framework for stationary data based on a hybrid decomposition method and the Bidirectional Long Short-term Memory (BiLSTM) to achieve high forecasting accuracy for the Dumat Al-Jandal wind farm in Al-Jouf, Saudi Arabia. The hybrid decomposition method combines the Wavelet Packet Decomposition (WPD) and the Seasonal Adjustment Method (SAM). The SAM method eliminates the seasonal component of the decomposed subseries generated by WPD to reduce forecasting complexity. The BiLSTM is applied to forecast all the deseasonalized decomposed subseries. Five years of hourly wind speed observations acquired from a location in the Al-Jouf region were used to prove the effectiveness of the proposed model. The comparative experimental results, including 27 other models, demonstrated the proposed model's superiority in single and multiple WSF with an overall average mean absolute error of 0.176549, root mean square error of 0.247069, and R-squared error of 0.985987.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Short-term Wind Speed Forecasting for Power Integration in Smart Grids based on Hybrid LSSVM-SVMD Method [0.0]
Wind energy has become one of the most widely exploited renewable energy resources.
The successful integration of wind power into the grid system is contingent upon accurate wind speed forecasting models.
In this paper, a hybrid machine learning approach is developed for predicting short-term wind speed.
arXiv Detail & Related papers (2024-08-30T10:35:59Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - A Deep Learning Method for Real-time Bias Correction of Wind Field
Forecasts in the Western North Pacific [24.287588853356972]
Real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021.
Wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively.
arXiv Detail & Related papers (2022-12-29T02:58:12Z) - Multi-Step Short-Term Wind Speed Prediction with Rank Pooling and Fast
Fourier Transformation [0.0]
Short-term wind speed prediction is essential for economical wind power utilization.
The real-world wind speed data is typically intermittent and fluctuating, presenting great challenges to existing shallow models.
We present a novel deep hybrid model for multi-step wind speed prediction, namely LR-FFT-RP-MLP/LSTM.
arXiv Detail & Related papers (2022-11-23T14:02:52Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Hybrid Transformer Network for Different Horizons-based Enriched Wind
Speed Forecasting [0.0]
Highly accurate different horizon-based wind speed forecasting facilitates a better modern power system.
This paper proposed a novel astute hybrid wind speed forecasting model and applied it to different horizons.
Comparative analysis with real-time Kethanur, India wind farm dataset results reveals the proposed ICEEMDAN-TNF-MLPN-RECS hybrid model's superior performance.
arXiv Detail & Related papers (2022-04-07T12:03:53Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Wind Speed Prediction and Visualization Using Long Short-Term Memory
Networks (LSTM) [1.8495489370732452]
This paper proposes the prediction of wind speed that simplifies wind farm planning and feasibility study.
The results show a deep learning approach, long short-term memory (LSTM) outperforms other models with the highest accuracy of 97.8%.
arXiv Detail & Related papers (2020-05-22T17:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.