Zero-Shot Low Light Image Enhancement with Diffusion Prior
- URL: http://arxiv.org/abs/2412.13401v2
- Date: Sun, 22 Dec 2024 21:29:58 GMT
- Title: Zero-Shot Low Light Image Enhancement with Diffusion Prior
- Authors: Joshua Cho, Sara Aghajanzadeh, Zhen Zhu, D. A. Forsyth,
- Abstract summary: We introduce a novel zero-shot method for controlling and refining the generative behavior of diffusion models for dark-to-light image conversion tasks.
Our method demonstrates superior performance over existing state-of-the-art methods in the task of low-light image enhancement.
- Score: 2.102429358229889
- License:
- Abstract: Balancing aesthetic quality with fidelity when enhancing images from challenging, degraded sources is a core objective in computational photography. In this paper, we address low light image enhancement (LLIE), a task in which dark images often contain limited visible information. Diffusion models, known for their powerful image enhancement capacities, are a natural choice for this problem. However, their deep generative priors can also lead to hallucinations, introducing non-existent elements or substantially altering the visual semantics of the original scene. In this work, we introduce a novel zero-shot method for controlling and refining the generative behavior of diffusion models for dark-to-light image conversion tasks. Our method demonstrates superior performance over existing state-of-the-art methods in the task of low-light image enhancement, as evidenced by both quantitative metrics and qualitative analysis.
Related papers
- FreeEnhance: Tuning-Free Image Enhancement via Content-Consistent Noising-and-Denoising Process [120.91393949012014]
FreeEnhance is a framework for content-consistent image enhancement using off-the-shelf image diffusion models.
In the noising stage, FreeEnhance is devised to add lighter noise to the region with higher frequency to preserve the high-frequent patterns in the original image.
In the denoising stage, we present three target properties as constraints to regularize the predicted noise, enhancing images with high acutance and high visual quality.
arXiv Detail & Related papers (2024-09-11T17:58:50Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
Self-Calibrated Illumination (SCI) is a strategy initially developed for RGB images.
We employ the SCI method to intensify and clarify details that are typically lost in low-light conditions.
This method of selective illumination enhancement leaves the color information intact, thus preserving the color integrity of the image.
arXiv Detail & Related papers (2023-12-23T08:49:19Z) - Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition [78.50328335703914]
Diffusion in the Dark (DiD) is a diffusion model for low-light image reconstruction for text recognition.
We demonstrate that DiD, without any task-specific optimization, can outperform SOTA low-light methods in low-light text recognition on real images.
arXiv Detail & Related papers (2023-03-07T23:52:51Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
We present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image.
In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process.
Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T16:21:24Z) - Semi-supervised atmospheric component learning in low-light image
problem [0.0]
Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices.
This study presents a semi-supervised training method using no-reference image quality metrics for low-light image restoration.
arXiv Detail & Related papers (2022-04-15T17:06:33Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Low-light Image Enhancement Using the Cell Vibration Model [12.400040803969501]
Low light very likely leads to the degradation of an image's quality and even causes visual task failures.
We propose a new single low-light image lightness enhancement method.
Experimental results show that the proposed algorithm is superior to nine state-of-the-art methods.
arXiv Detail & Related papers (2020-06-03T13:39:10Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.