DarkIR: Robust Low-Light Image Restoration
- URL: http://arxiv.org/abs/2412.13443v2
- Date: Fri, 31 Jan 2025 18:52:04 GMT
- Title: DarkIR: Robust Low-Light Image Restoration
- Authors: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos V. Conde,
- Abstract summary: We present an efficient and robust neural network for multi-task low-light image restoration.
Our model, DarkIR, achieves new state-of-the-art results on the popular LOLBlur, LOLv2 and Real-LOLBlur datasets.
- Score: 6.646501936980895
- License:
- Abstract: Photography during night or in dark conditions typically suffers from noise, low light and blurring issues due to the dim environment and the common use of long exposure. Although Deblurring and Low-light Image Enhancement (LLIE) are related under these conditions, most approaches in image restoration solve these tasks separately. In this paper, we present an efficient and robust neural network for multi-task low-light image restoration. Instead of following the current tendency of Transformer-based models, we propose new attention mechanisms to enhance the receptive field of efficient CNNs. Our method reduces the computational costs in terms of parameters and MAC operations compared to previous methods. Our model, DarkIR, achieves new state-of-the-art results on the popular LOLBlur, LOLv2 and Real-LOLBlur datasets, being able to generalize on real-world night and dark images. Code and models at https://github.com/cidautai/DarkIR
Related papers
- FLOL: Fast Baselines for Real-World Low-Light Enhancement [6.646501936980895]
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging.
We propose a lightweight neural network that combines image processing in the frequency and spatial domains.
Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets.
arXiv Detail & Related papers (2025-01-16T18:06:09Z) - DAP-LED: Learning Degradation-Aware Priors with CLIP for Joint Low-light Enhancement and Deblurring [14.003870853594972]
We propose a novel transformer-based joint learning framework, named DAP-LED.
It can jointly achieve low-light enhancement and deblurring, benefiting downstream tasks, such as depth estimation, segmentation, and detection in the dark.
The key insight is to leverage CLIP to adaptively learn the degradation levels from images at night.
arXiv Detail & Related papers (2024-09-20T13:37:53Z) - DiffuseRAW: End-to-End Generative RAW Image Processing for Low-Light Images [5.439020425819001]
We develop a new generative ISP that relies on fine-tuning latent diffusion models on RAW images.
We evaluate our approach on popular end-to-end low-light datasets for which we see promising results.
arXiv Detail & Related papers (2023-12-13T03:39:05Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - Retinexformer: One-stage Retinex-based Transformer for Low-light Image
Enhancement [96.09255345336639]
We formulate a principled One-stage Retinex-based Framework (ORF) to enhance low-light images.
ORF first estimates the illumination information to light up the low-light image and then restores the corruption to produce the enhanced image.
Our algorithm, Retinexformer, significantly outperforms state-of-the-art methods on thirteen benchmarks.
arXiv Detail & Related papers (2023-03-12T16:54:08Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
We show how to use a combination of three techniques to allow the existing photometric losses to work for both day and nighttime images.
First, we introduce a per-pixel neural intensity transformation to compensate for the light changes that occur between successive frames.
Second, we predict a per-pixel residual flow map that we use to correct the reprojection correspondences induced by the estimated ego-motion and depth.
arXiv Detail & Related papers (2022-06-28T09:29:55Z) - BLNet: A Fast Deep Learning Framework for Low-Light Image Enhancement
with Noise Removal and Color Restoration [14.75902042351609]
We propose a very fast deep learning framework called Bringing the Lightness (denoted as BLNet)
Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination.
We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization.
arXiv Detail & Related papers (2021-06-30T10:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.