DiffuseRAW: End-to-End Generative RAW Image Processing for Low-Light Images
- URL: http://arxiv.org/abs/2402.18575v1
- Date: Wed, 13 Dec 2023 03:39:05 GMT
- Title: DiffuseRAW: End-to-End Generative RAW Image Processing for Low-Light Images
- Authors: Rishit Dagli,
- Abstract summary: We develop a new generative ISP that relies on fine-tuning latent diffusion models on RAW images.
We evaluate our approach on popular end-to-end low-light datasets for which we see promising results.
- Score: 5.439020425819001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imaging under extremely low-light conditions presents a significant challenge and is an ill-posed problem due to the low signal-to-noise ratio (SNR) caused by minimal photon capture. Previously, diffusion models have been used for multiple kinds of generative tasks and image-to-image tasks, however, these models work as a post-processing step. These diffusion models are trained on processed images and learn on processed images. However, such approaches are often not well-suited for extremely low-light tasks. Unlike the task of low-light image enhancement or image-to-image enhancement, we tackle the task of learning the entire image-processing pipeline, from the RAW image to a processed image. For this task, a traditional image processing pipeline often consists of multiple specialized parts that are overly reliant on the downstream tasks. Unlike these, we develop a new generative ISP that relies on fine-tuning latent diffusion models on RAW images and generating processed long-exposure images which allows for the apt use of the priors from large text-to-image generation models. We evaluate our approach on popular end-to-end low-light datasets for which we see promising results and set a new SoTA on the See-in-Dark (SID) dataset. Furthermore, with this work, we hope to pave the way for more generative and diffusion-based image processing and other problems on RAW data.
Related papers
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Denoising Diffusion Post-Processing for Low-Light Image Enhancement [0.0]
Low-light image enhancement (LLIE) techniques attempt to increase the visibility of images captured in low-light scenarios.
LLIE techniques introduce a variety of image degradations such as noise and color bias.
Post-processing denoisers have widely been used, which often yield oversmoothed results lacking detail.
We introduce Low-light Post-processing Diffusion Model (LPDM) in order to model the conditional distribution between under-exposed and normally-exposed images.
arXiv Detail & Related papers (2023-03-16T20:06:55Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - Burst Photography for Learning to Enhance Extremely Dark Images [19.85860245798819]
In this paper, we aim to leverage burst photography to boost the performance and obtain much sharper and more accurate RGB images from extremely dark raw images.
The backbone of our proposed framework is a novel coarse-to-fine network architecture that generates high-quality outputs progressively.
Our experiments demonstrate that our approach leads to perceptually more pleasing results than the state-of-the-art methods by producing more detailed and considerably higher quality images.
arXiv Detail & Related papers (2020-06-17T13:19:07Z) - Burst Denoising of Dark Images [19.85860245798819]
We propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images.
The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner.
Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T17:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.