論文の概要: ConDo: Continual Domain Expansion for Absolute Pose Regression
- arxiv url: http://arxiv.org/abs/2412.13452v1
- Date: Wed, 18 Dec 2024 02:49:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:08.141799
- Title: ConDo: Continual Domain Expansion for Absolute Pose Regression
- Title(参考訳): ConDo: 絶対的なPose回帰のための継続的なドメイン拡張
- Authors: Zijun Li, Zhipeng Cai, Bochun Yang, Xuelun Shen, Siqi Shen, Xiaoliang Fan, Michael Paulitsch, Cheng Wang,
- Abstract要約: この研究はCondo(Continuous Domain Expansion)を提案し、APR(Absolute Pose Regression)を更新するためにラベルのない推論データを継続的に収集する。
ConDoは、アーキテクチャ、シーンタイプ、データ変更のベースラインを一貫して大幅に上回る。
分析は、計算予算、バッファサイズのリプレイ、教師予測ノイズに対するConDoの堅牢性を示している。
- 参考スコア(独自算出の注目度): 18.863310509229123
- License:
- Abstract: Visual localization is a fundamental machine learning problem. Absolute Pose Regression (APR) trains a scene-dependent model to efficiently map an input image to the camera pose in a pre-defined scene. However, many applications have continually changing environments, where inference data at novel poses or scene conditions (weather, geometry) appear after deployment. Training APR on a fixed dataset leads to overfitting, making it fail catastrophically on challenging novel data. This work proposes Continual Domain Expansion (ConDo), which continually collects unlabeled inference data to update the deployed APR. Instead of applying standard unsupervised domain adaptation methods which are ineffective for APR, ConDo effectively learns from unlabeled data by distilling knowledge from scene-agnostic localization methods. By sampling data uniformly from historical and newly collected data, ConDo can effectively expand the generalization domain of APR. Large-scale benchmarks with various scene types are constructed to evaluate models under practical (long-term) data changes. ConDo consistently and significantly outperforms baselines across architectures, scene types, and data changes. On challenging scenes (Fig.1), it reduces the localization error by >7x (14.8m vs 1.7m). Analysis shows the robustness of ConDo against compute budgets, replay buffer sizes and teacher prediction noise. Comparing to model re-training, ConDo achieves similar performance up to 25x faster.
- Abstract(参考訳): 視覚的ローカライゼーションは、基本的な機械学習の問題である。
APR(Absolute Pose Regression)は、シーン依存モデルを使用して、予め定義されたシーンにおけるカメラポーズに入力イメージを効率的にマッピングする。
しかし、多くのアプリケーションは環境を継続的に変更し続けており、そこでは、新しいポーズやシーン条件(例えば、幾何学)の推測データがデプロイ後に現れる。
固定データセット上でAPRをトレーニングすると、過度に適合し、挑戦する新規データに対して壊滅的に失敗する。
本研究では,非ラベル付き推論データを継続的に収集してデプロイされたAPRを更新するCondo(Continuous Domain Expansion)を提案する。
ConDoは、APRに非有効な標準的な教師なしドメイン適応法を適用する代わりに、シーンに依存しないローカライゼーション法から知識を抽出することで、ラベルなしデータから効果的に学習する。
歴史的および新たに収集されたデータから一様にデータをサンプリングすることにより、ConDoはAPRの一般化領域を効果的に拡張することができる。
様々なシーンタイプを持つ大規模ベンチマークは、実用的な(長期的な)データ変更の下でモデルを評価するために構築される。
ConDoは、アーキテクチャ、シーンタイプ、データ変更のベースラインを一貫して大幅に上回る。
挑戦的なシーン(図1)では、ローカライズエラーを >7x (14.8m vs 1.7m) 削減する。
分析は、計算予算、バッファサイズのリプレイ、教師予測ノイズに対するConDoの堅牢性を示している。
モデルの再トレーニングと比較して、ConDoは同様のパフォーマンスを最大25倍高速に達成している。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Placing Objects in Context via Inpainting for Out-of-distribution Segmentation [59.00092709848619]
コンテキスト内のオブジェクトの配置(POC)は、イメージにオブジェクトを現実的に追加するためのパイプラインである。
POCは任意の数のオブジェクトで任意のデータセットを拡張するために使用することができる。
本稿では,POC 生成データに基づく様々な異常セグメンテーションデータセットを提示し,最近の最先端の異常チューニング手法の性能向上を実証する。
論文 参考訳(メタデータ) (2024-02-26T08:32:41Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Unsupervised Continual Semantic Adaptation through Neural Rendering [32.099350613956716]
セマンティックセグメンテーションの課題に対する連続的マルチシーン適応について検討する。
本稿では,セグメンテーションモデルの予測を融合させることで,シーン毎にセマンティック・NeRFネットワークを訓練する。
我々は,Voxelベースのベースラインと最先端の教師なしドメイン適応手法の両方より優れているScanNetに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-11-25T09:31:41Z) - Domain-incremental Cardiac Image Segmentation with Style-oriented Replay
and Domain-sensitive Feature Whitening [67.6394526631557]
M&Mは、各受信データセットから漸進的に学習し、時間が経つにつれて改善された機能で漸進的に更新する必要がある。
医学的シナリオでは、データのプライバシのため、過去のデータへのアクセスや保存が一般的に許可されないため、これは特に困難である。
本稿では,まず過去のドメイン入力を復元し,モデル最適化中に定期的に再生する新しいドメイン増分学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-09T13:07:36Z) - A Batch Normalization Classifier for Domain Adaptation [0.0]
トレーニングセット外の予期せぬデータにモデルを適応させることは、新しいアプローチを動機づけ続ける一般的な問題である。
本研究では,ソフトマックスアクティベーション前の出力層におけるバッチ正規化の適用により,改良されたResNetモデルにおける視覚データ領域間の一般化が向上することを示す。
論文 参考訳(メタデータ) (2021-03-22T08:03:44Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
非重複カメラにおける人物再識別(ReID)は難しい課題である。
Unsupervised Domain Adaptation(UDA)は、ソースで訓練されたモデルから、IDラベルアノテーションなしでターゲットドメインへの機能学習適応を実行するため、有望な代替手段です。
本稿では,新しいオフライン戦略によって生成されたサンプルのトリプレットを利用する,UDAベースのReID手法を提案する。
論文 参考訳(メタデータ) (2021-03-21T23:58:39Z) - Insights on Evaluation of Camera Re-localization Using Relative Pose
Regression [0.9236074230806579]
視覚的再局在化における相対的ポーズ回帰の問題を考察する。
上記の問題を治療するための3つの新しい指標を提案する。
我々のネットワークは、特に、一つのシーンでのトレーニングは、他のシーンのパフォーマンスをほとんど損なわないことを示す。
論文 参考訳(メタデータ) (2020-09-23T19:16:26Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Keep it Simple: Image Statistics Matching for Domain Adaptation [0.0]
ドメイン適応(英: Domain Adaptation, DA)とは、未ラベル画像のみが対象領域から利用可能である場合に検出精度を維持する手法である。
最近の最先端の手法は、敵の訓練戦略を用いて領域ギャップを減らそうとしている。
そこで本研究では,色ヒストグラムと平均画像の共分散を対象領域に合わせることを提案する。
近年の手法と比較して,より簡単な訓練手法を用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-05-26T07:32:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。