論文の概要: Multi-view Granular-ball Contrastive Clustering
- arxiv url: http://arxiv.org/abs/2412.13550v2
- Date: Thu, 19 Dec 2024 02:41:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:30:37.803126
- Title: Multi-view Granular-ball Contrastive Clustering
- Title(参考訳): 多視点グラニュラーボールコントラストクラスタリング
- Authors: Peng Su, Shudong Huang, Weihong Ma, Deng Xiong, Jiancheng Lv,
- Abstract要約: 粒状球はインスタンスとクラスタの間にあり、サンプル集合の局所的な位相構造を自然に保存する。
我々はMGBCC(Multi-view Granular-ball Contrastive Clustering)という手法を提案する。
- 参考スコア(独自算出の注目度): 15.732090918798395
- License:
- Abstract: Previous multi-view contrastive learning methods typically operate at two scales: instance-level and cluster-level. Instance-level approaches construct positive and negative pairs based on sample correspondences, aiming to bring positive pairs closer and push negative pairs further apart in the latent space. Cluster-level methods focus on calculating cluster assignments for samples under each view and maximize view consensus by reducing distribution discrepancies, e.g., minimizing KL divergence or maximizing mutual information. However, these two types of methods either introduce false negatives, leading to reduced model discriminability, or overlook local structures and cannot measure relationships between clusters across views explicitly. To this end, we propose a method named Multi-view Granular-ball Contrastive Clustering (MGBCC). MGBCC segments the sample set into coarse-grained granular balls, and establishes associations between intra-view and cross-view granular balls. These associations are reinforced in a shared latent space, thereby achieving multi-granularity contrastive learning. Granular balls lie between instances and clusters, naturally preserving the local topological structure of the sample set. We conduct extensive experiments to validate the effectiveness of the proposed method.
- Abstract(参考訳): 従来のマルチビューコントラスト学習手法は、通常、インスタンスレベルとクラスタレベルという2つのスケールで動作する。
インスタンスレベルのアプローチは、サンプル対応に基づいて正と負のペアを構築し、正のペアを近接させ、潜在空間において負のペアをさらに分離することを目的としている。
クラスタレベルの手法は、各ビュー下のサンプルに対するクラスタ割り当ての計算に重点を置いており、分散の相違を減らし、KLの発散を最小限にし、相互情報を最大化することで、ビューコンセンサスを最大化する。
しかし、これらの2種類の手法は偽陰性を導入し、モデルの識別性を低下させるか、あるいは局所構造を見落とし、ビューを横断するクラスタ間の関係を明示的に測定することができない。
そこで本研究では,MGBCC (Multi-view Granular-ball Contrastive Clustering) という手法を提案する。
MGBCCは、試料を粗粒状粒状球に分割し、視野内と粒状粒状球の関連性を確立する。
これらの関連性は共有潜在空間で強化され、多粒性コントラスト学習を実現する。
粒状球はインスタンスとクラスタの間にあり、サンプル集合の局所的な位相構造を自然に保存する。
提案手法の有効性を検証するため, 広範囲な実験を行った。
関連論文リスト
- Deep Contrastive Multi-view Clustering under Semantic Feature Guidance [8.055452424643562]
本稿では,Semantic Feature Guide (DCMCS) の下で,Deep Contrastive Multi-view Clustering というマルチビュークラスタリングフレームワークを提案する。
意味的類似性によって重み付けされたインスタンスレベルのコントラスト損失を最小化することにより、DCMCSは偽陰対間のコントラストの傾きを適応的に弱める。
いくつかの公開データセットの実験結果は、提案したフレームワークが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2024-03-09T02:33:38Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Enhancing Clustering Representations with Positive Proximity and Cluster
Dispersion Learning [9.396177578282176]
PIPCDRと呼ばれる新しいエンドツーエンドのディープクラスタリング手法を提案する。
PIPCDRは正のインスタンス近接損失とクラスタ分散正規化器を組み込んでいる。
エンドツーエンドのMajorize-MinimizationフレームワークにおけるPIPCDRの有効性を広範囲に検証する。
論文 参考訳(メタデータ) (2023-11-01T06:12:02Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
ディープクラスタリングのための非コントラスト表現学習は、負の例のない代表的手法であるBYOLに基づいている。
NCCは、すべてのクラスタが十分に分離され、クラスタ内の例がコンパクトな埋め込み空間を形成する。
ImageNet-1Kを含むいくつかのクラスタリングベンチマークデータセットの実験結果は、NCCが最先端の手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2021-11-23T12:21:53Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z) - Contrastive Clustering [57.71729650297379]
本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-09-21T08:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。