Faster and Stronger: When ANN-SNN Conversion Meets Parallel Spiking Calculation
- URL: http://arxiv.org/abs/2412.13610v1
- Date: Wed, 18 Dec 2024 08:37:13 GMT
- Title: Faster and Stronger: When ANN-SNN Conversion Meets Parallel Spiking Calculation
- Authors: Zecheng Hao, Zhaofei Yu, Tiejun Huang,
- Abstract summary: Spiking Neural Network (SNN), as a brain-inspired and energy-efficient network, is facing the pivotal challenge of exploring a suitable learning framework.
We propose a novel parallel conversion learning framework, which establishes a mathematical mapping relationship between each time-step of the parallel spiking neurons.
- Score: 45.67180051148674
- License:
- Abstract: Spiking Neural Network (SNN), as a brain-inspired and energy-efficient network, is currently facing the pivotal challenge of exploring a suitable and efficient learning framework. The predominant training methodologies, namely Spatial-Temporal Back-propagation (STBP) and ANN-SNN Conversion, are encumbered by substantial training overhead or pronounced inference latency, which impedes the advancement of SNNs in scaling to larger networks and navigating intricate application domains. In this work, we propose a novel parallel conversion learning framework, which establishes a mathematical mapping relationship between each time-step of the parallel spiking neurons and the cumulative spike firing rate. We theoretically validate the lossless and sorting properties of the conversion process, as well as pointing out the optimal shifting distance for each step. Furthermore, by integrating the above framework with the distribution-aware error calibration technique, we can achieve efficient conversion towards more general activation functions or training-free circumstance. Extensive experiments have confirmed the significant performance advantages of our method for various conversion cases under ultra-low time latency. To our best knowledge, this is the first work which jointly utilizes parallel spiking calculation and ANN-SNN Conversion, providing a highly promising approach for SNN supervised training.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Training-free Conversion of Pretrained ANNs to SNNs for Low-Power and High-Performance Applications [23.502136316777058]
Spiking Neural Networks (SNNs) have emerged as a promising substitute for Artificial Neural Networks (ANNs)
Existing supervised learning algorithms for SNNs require significantly more memory and time than their ANN counterparts.
Our approach directly converts pre-trained ANN models into high-performance SNNs without additional training.
arXiv Detail & Related papers (2024-09-05T09:14:44Z) - FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion [16.9748086865693]
Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs)
In this work, we introduce a lightweight Forward Temporal Bias (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead.
We further propose an algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation.
arXiv Detail & Related papers (2024-03-27T09:25:20Z) - When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNNs) are demonstrating comparable accuracy to convolutional neural networks (CNN)
ANN-to-SNN conversion has recently gained significant traction in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on complex image recognition tasks.
We propose a novel ANN-to-SNN conversion framework, that incurs an exponentially lower number of time steps compared to that required in the SOTA conversion approaches.
arXiv Detail & Related papers (2023-12-12T00:10:45Z) - Artificial to Spiking Neural Networks Conversion for Scientific Machine
Learning [24.799635365988905]
We introduce a method to convert Physics-Informed Neural Networks (PINNs) to Spiking Neural Networks (SNNs)
SNNs are expected to have higher energy efficiency compared to traditional Artificial Neural Networks (ANNs)
arXiv Detail & Related papers (2023-08-31T00:21:27Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.