NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks
- URL: http://arxiv.org/abs/2412.13618v1
- Date: Wed, 18 Dec 2024 08:57:05 GMT
- Title: NPC: Neural Predictive Control for Fuel-Efficient Autonomous Trucks
- Authors: Jiaping Ren, Jiahao Xiang, Hongfei Gao, Jinchuan Zhang, Yiming Ren, Yuexin Ma, Yi Wu, Ruigang Yang, Wei Li,
- Abstract summary: Fuel efficiency is a crucial aspect of long-distance cargo transportation by oil-powered trucks.
Current predictive control methods depend on an accurate model of vehicle dynamics and engine.
We propose a pure data-driven method, Neural Predictive Control (NPC), which does not use any physical model for the vehicle.
- Score: 31.02279745978277
- License:
- Abstract: Fuel efficiency is a crucial aspect of long-distance cargo transportation by oil-powered trucks that economize on costs and decrease carbon emissions. Current predictive control methods depend on an accurate model of vehicle dynamics and engine, including weight, drag coefficient, and the Brake-specific Fuel Consumption (BSFC) map of the engine. We propose a pure data-driven method, Neural Predictive Control (NPC), which does not use any physical model for the vehicle. After training with over 20,000 km of historical data, the novel proposed NVFormer implicitly models the relationship between vehicle dynamics, road slope, fuel consumption, and control commands using the attention mechanism. Based on the online sampled primitives from the past of the current freight trip and anchor-based future data synthesis, the NVFormer can infer optimal control command for reasonable fuel consumption. The physical model-free NPC outperforms the base PCC method with 2.41% and 3.45% more significant fuel saving in simulation and open-road highway testing, respectively.
Related papers
- EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics [0.3749861135832072]
An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs.
This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising.
arXiv Detail & Related papers (2024-11-22T02:56:47Z) - EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption [9.42048156323799]
This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
arXiv Detail & Related papers (2024-07-22T16:48:37Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
We present a novel formulation to model the effects of a locked differential on the lateral dynamics of an autonomous open-wheel racecar.
We include a micro-steps discretization approach to accurately linearize the dynamics and produce a prediction suitable for real-time implementation.
arXiv Detail & Related papers (2023-12-22T16:29:55Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - Real-Time Monitoring and Driver Feedback to Promote Fuel Efficient
Driving [0.7087237546722617]
We propose a novel framework to promote fuel-efficient driving behaviors through real-time automatic monitoring and driver feedback.
A random-forest based classification model developed using historical data is used to identify fuel-inefficient driving behaviors.
When an inefficient driving action is detected, a fuzzy logic inference system is used to determine what the driver should do to maintain fuel-efficient driving behavior.
arXiv Detail & Related papers (2020-07-03T09:23:53Z) - A Physics Model-Guided Online Bayesian Framework for Energy Management
of Extended Range Electric Delivery Vehicles [3.927161292818792]
This paper improves an in-use rule-based EMS that is used in a delivery vehicle fleet equipped with two-way vehicle-to-cloud connectivity.
A physics model-guided online Bayesian framework is described and validated on large number of in-use driving samples of EREVs used for last-mile package delivery.
Results show an average of 12.8% fuel use reduction among tested vehicles for 155 real delivery trips.
arXiv Detail & Related papers (2020-06-01T08:43:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.