論文の概要: SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
- arxiv url: http://arxiv.org/abs/2412.13649v1
- Date: Wed, 18 Dec 2024 09:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:24:48.034552
- Title: SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
- Title(参考訳): SCOPE:長文生成におけるキーバリューキャッシュ圧縮の最適化
- Authors: Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, Yulan He, Deyu Zhou,
- Abstract要約: SCOPEは、プリフィルとデコードフェーズでKVキャッシュを最適化するフレームワークである。
メモリ使用量とメモリ転送は、適応的かつ不連続な戦略によってさらに最適化される。
LongGenBenchの実験はSCOPEの有効性と一般化を示している。
- 参考スコア(独自算出の注目度): 28.78295040602572
- License:
- Abstract: Key-Value (KV) cache has become a bottleneck of LLMs for long-context generation. Despite the numerous efforts in this area, the optimization for the decoding phase is generally ignored. However, we believe such optimization is crucial, especially for long-output generation tasks based on the following two observations: (i) Excessive compression during the prefill phase, which requires specific full context impairs the comprehension of the reasoning task; (ii) Deviation of heavy hitters occurs in the reasoning tasks with long outputs. Therefore, SCOPE, a simple yet efficient framework that separately performs KV cache optimization during the prefill and decoding phases, is introduced. Specifically, the KV cache during the prefill phase is preserved to maintain the essential information, while a novel strategy based on sliding is proposed to select essential heavy hitters for the decoding phase. Memory usage and memory transfer are further optimized using adaptive and discontinuous strategies. Extensive experiments on LongGenBench show the effectiveness and generalization of SCOPE and its compatibility as a plug-in to other prefill-only KV compression methods.
- Abstract(参考訳): キーバリュー(KV)キャッシュは、長文生成のためのLLMのボトルネックとなっている。
この領域での多くの努力にもかかわらず、復号フェーズの最適化は一般的に無視されている。
しかし、このような最適化は特に、以下の2つの観測に基づく長期出力生成タスクにおいて重要であると我々は信じている。
一 準備段階の過度な圧縮であって、特定の完全な文脈を必要とするものは、推論作業の理解を損なうもの
(II)長出力の推論タスクにおいて重打手の偏差が発生する。
そこで、SCOPEは、プリフィルとデコードフェーズの間、KVキャッシュを個別に最適化する、シンプルで効率的なフレームワークである。
具体的には,プリフィル時のKVキャッシュは必須情報を維持するために保存され,スライディングに基づく新しい戦略が提案され,復号相に必要な重ヒッタが選択される。
メモリ使用量とメモリ転送は、適応的かつ不連続な戦略によってさらに最適化される。
LongGenBenchの大規模な実験は、SCOPEの有効性と、他のプリフィルオンリーのKV圧縮手法へのプラグインとしての互換性を示している。
関連論文リスト
- More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification [29.163757099307553]
大規模視覚言語モデル(LVLM)の効率は、プリフィルフェーズにおける注意機構の計算ボトルネックによって制約される。
本稿では,重要なトークンの動的比割り当て戦略を通じて,LVLM向けに設計された効率的な推論フレームワークZipVLを提案する。
論文 参考訳(メタデータ) (2024-10-11T07:24:21Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference [19.447729423696096]
大規模言語モデルは様々なドメインで優れていますが、キーバリュー(KV)キャッシュの増加によって効率上の課題に直面しています。
最近の取り組みは、実行中に大量の非クリティカルキャッシュ要素を排除し、KVキャッシュサイズを削減することを目的としている。
本稿では,Ada-KVを提案する。
論文 参考訳(メタデータ) (2024-07-16T09:53:32Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。