PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling
- URL: http://arxiv.org/abs/2412.13660v1
- Date: Wed, 18 Dec 2024 09:38:43 GMT
- Title: PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling
- Authors: Haojie Xie, Yirong Chen, Xiaofen Xing, Jingkai Lin, Xiangmin Xu,
- Abstract summary: We propose PsyDT, a novel framework to construct the Digital Twin of Psychological counselor with personalized counseling style.<n>Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases, our framework offers a faster and more cost-effective solution.
- Score: 12.08584138023052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor's digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor's unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client's questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.
Related papers
- Psy-Copilot: Visual Chain of Thought for Counseling [11.997628014543773]
Psy-COT is a graph designed to visualize the thought processes of large language models (LLMs) during therapy sessions.
Psy-Copilot is a conversational AI assistant designed to assist human psychological therapists in their consultations.
The Psy-Copilot is designed not to replace psychotherapists but to foster collaboration between AI and human therapists.
arXiv Detail & Related papers (2025-03-05T16:23:15Z) - AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues.
Online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame.
arXiv Detail & Related papers (2025-01-16T09:57:12Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
We investigate the potential and limitations of using large language models (LLMs) as providers of evidence-based therapy.
We replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors.
Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift.
arXiv Detail & Related papers (2024-09-03T19:19:13Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
We propose a framework that employs two large language models (LLMs) via role-playing for simulating counselor-client interactions.
Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor.
arXiv Detail & Related papers (2024-08-28T13:29:59Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling [27.193022503592342]
We propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling.
To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues.
A comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations.
arXiv Detail & Related papers (2024-05-26T05:18:00Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
We propose a framework, PsychoBench, for evaluating diverse psychological aspects of Large Language Models (LLMs)
PsychoBench classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities.
We employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs.
arXiv Detail & Related papers (2023-10-02T17:46:09Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.