論文の概要: LLM-SEM: A Sentiment-Based Student Engagement Metric Using LLMS for E-Learning Platforms
- arxiv url: http://arxiv.org/abs/2412.13765v2
- Date: Thu, 19 Dec 2024 15:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:26.237193
- Title: LLM-SEM: A Sentiment-Based Student Engagement Metric Using LLMS for E-Learning Platforms
- Title(参考訳): LLM-SEM:EラーニングプラットフォームのためのLLMSを用いた感性ベースの学生エンゲージメントメトリクス
- Authors: Ali Hamdi, Ahmed Abdelmoneim Mazrou, Mohamed Shaltout,
- Abstract要約: LLM-SEM (Language Model-Based Students Engagement Metric) は,ビデオメタデータと学生コメントの感情分析を利用してエンゲージメントを測定する手法である。
我々は、テキストの曖昧さを軽減し、ビューやいいね!といった重要な特徴を正規化するために、高品質な感情予測を生成する。
包括的メタデータと感情極性スコアを組み合わせることで、コースと授業レベルのエンゲージメントを測定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Current methods for analyzing student engagement in e-learning platforms, including automated systems, often struggle with challenges such as handling fuzzy sentiment in text comments and relying on limited metadata. Traditional approaches, such as surveys and questionnaires, also face issues like small sample sizes and scalability. In this paper, we introduce LLM-SEM (Language Model-Based Student Engagement Metric), a novel approach that leverages video metadata and sentiment analysis of student comments to measure engagement. By utilizing recent Large Language Models (LLMs), we generate high-quality sentiment predictions to mitigate text fuzziness and normalize key features such as views and likes. Our holistic method combines comprehensive metadata with sentiment polarity scores to gauge engagement at both the course and lesson levels. Extensive experiments were conducted to evaluate various LLM models, demonstrating the effectiveness of LLM-SEM in providing a scalable and accurate measure of student engagement. We fine-tuned TXLM-RoBERTa using human-annotated sentiment datasets to enhance prediction accuracy and utilized LLama 3B, and Gemma 9B from Ollama.
- Abstract(参考訳): 自動システムを含むeラーニングプラットフォームにおける生徒のエンゲージメントを分析する現在の手法は、テキストコメントにおけるファジィ感情の扱いやメタデータの制限といった課題に悩まされることが多い。
調査やアンケートのような従来のアプローチも、小さなサンプルサイズやスケーラビリティといった問題に直面しています。
本稿では、ビデオメタデータと学生コメントの感情分析を利用してエンゲージメントを計測するLLM-SEM(Language Model-Based Students Engagement Metric)を紹介する。
近年のLarge Language Models (LLMs) を利用して,テキストの曖昧さを軽減し,ビューなどの重要な特徴を正規化するために,高品質な感情予測を生成する。
包括的メタデータと感情極性スコアを組み合わせることで、コースと授業レベルのエンゲージメントを測定する。
学生エンゲージメントのスケーラブルで正確な尺度を提供する上で, LLM-SEMの有効性を実証し, 様々なLLMモデルの評価を行った。
人手による感情データセットを用いてTXLM-RoBERTaを微調整し、予測精度を高め、オラマからLLama 3B、Gemma 9Bを利用した。
関連論文リスト
- VilBias: A Study of Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges [2.2751168722976587]
VLBiasは、最先端のLarge Language Models(LLM)とVision-Language Models(VLM)を活用して、ニュースコンテンツの言語的および視覚的バイアスを検出するフレームワークである。
本稿では,多様なニュースソースからのテキストコンテンツと対応する画像からなるマルチモーダルデータセットを提案する。
論文 参考訳(メタデータ) (2024-12-22T15:05:30Z) - Evaluating the Performance of Large Language Models in Scientific Claim Detection and Classification [0.0]
本研究では,Twitterのようなプラットフォーム上での誤情報を緩和する革新的な手法として,LLM(Large Language Models)の有効性を評価する。
LLMは、従来の機械学習モデルに関連する広範なトレーニングと過度に適合する問題を回避し、事前訓練された適応可能なアプローチを提供する。
特定データセットを用いたLCMの性能の比較分析を行い、公衆衛生コミュニケーションへの応用のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-21T05:02:26Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
この研究は、データ保護規制を動機とした大規模言語モデルのための機械学習の研究に焦点をあてる。
我々はtextbfUntextbflearning (SPUL) のための textbfSoft textbfPrompting フレームワークを提案する。
本研究では,提案手法の厳密な評価を行い,SPULが実用性と忘れとのトレードオフを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2024-06-17T19:11:40Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。