論文の概要: Spatial Brain Tumor Concentration Estimation for Individualized Radiotherapy Planning
- arxiv url: http://arxiv.org/abs/2412.13811v1
- Date: Wed, 18 Dec 2024 12:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:45:59.001566
- Title: Spatial Brain Tumor Concentration Estimation for Individualized Radiotherapy Planning
- Title(参考訳): 個別放射線治療計画のための空間脳腫瘍濃度推定
- Authors: Jonas Weidner, Michal Balcerak, Ivan Ezhov, André Datchev, Laurin Lux, Lucas Zimmerand Daniel Rueckert, Björn Menze, Benedikt Wiestler,
- Abstract要約: 脳腫瘍の生体物理モデリングは放射線治療計画のパーソナライズ戦略として期待されている。
脳腫瘍患者の術前MRIから腫瘍細胞濃度を推定するために,ソフト物理制約を用いた効率的かつ直接的手法を提案する。
- 参考スコア(独自算出の注目度): 9.89718764056655
- License:
- Abstract: Biophysical modeling of brain tumors has emerged as a promising strategy for personalizing radiotherapy planning by estimating the otherwise hidden distribution of tumor cells within the brain. However, many existing state-of-the-art methods are computationally intensive, limiting their widespread translation into clinical practice. In this work, we propose an efficient and direct method that utilizes soft physical constraints to estimate the tumor cell concentration from preoperative MRI of brain tumor patients. Our approach optimizes a 3D tumor concentration field by simultaneously minimizing the difference between the observed MRI and a physically informed loss function. Compared to existing state-of-the-art techniques, our method significantly improves predicting tumor recurrence on two public datasets with a total of 192 patients while maintaining a clinically viable runtime of under one minute - a substantial reduction from the 30 minutes required by the current best approach. Furthermore, we showcase the generalizability of our framework by incorporating additional imaging information and physical constraints, highlighting its potential to translate to various medical diffusion phenomena with imperfect data.
- Abstract(参考訳): 脳腫瘍の生体物理モデリングは、他の腫瘍細胞の脳内分布を推定することによって放射線治療計画のパーソナライズするための有望な戦略として浮上している。
しかし、既存の最先端手法の多くは計算集約的であり、臨床実践への広範な翻訳を制限している。
そこで本研究では,脳腫瘍患者の術前MRIから腫瘍細胞濃度を推定するために,ソフト物理制約を用いた効率的かつ直接的な手法を提案する。
提案手法は,MRIと身体情報伝達損失関数の差を最小化することにより,3次元腫瘍濃度場を最適化する。
既存の最先端技術と比較して,本手法は,192人の患者を抱えた2つの公開データセットにおける腫瘍再発の予測を1分間以下に維持すると共に,現在のベストアプローチで要求される30分から大幅に短縮する。
さらに,画像情報と身体的制約を付加し,不完全データを用いた各種医療拡散現象への変換の可能性を明らかにすることで,我々の枠組みの一般化可能性を示す。
関連論文リスト
- Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
本稿では,データ駆動と物理に基づくコスト関数を統合する新しい手法を提案する。
腫瘍組織と脳組織の学習分布が,それぞれの成長と弾性の方程式にどの程度順応するかを定量化する,ユニークな離散化手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:36:14Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
BraTS-MEN-RTの課題は、脳MRIを計画する放射線治療の最大のマルチ機関データセットを使用して、自動セグメンテーションアルゴリズムを進化させることである。
それぞれの症例には、3D後T1強調放射線治療計画MRIがネイティブな取得スペースに含まれている。
ターゲットボリュームアノテーションは、確立された放射線治療計画プロトコルに準拠している。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction [0.5806504980491878]
今後,腫瘍マスクを生成できる新しいエンドツーエンドネットワークと,腫瘍が今後どのように見えるかの現実的なMRIを提示する。
我々のアプローチは、最先端拡散確率モデルとディープセグメンテーションニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2023-09-11T12:12:52Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
本稿では,T1GdとFLAIR MRIから患者特異的な脳腫瘍の空間分布を推定する手法を提案する。
itLearn-Morph-Inferと組み合わせたこの手法は、広く利用可能なハードウェア上で、数分のオーダーでリアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-11-07T13:45:35Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
3D MRIボリュームからの脳腫瘍の手動分割は、時間のかかる作業です。
私たちのモデルであるQuickTumorNetは、高速で信頼性があり、正確な脳腫瘍セグメンテーションを示しました。
論文 参考訳(メタデータ) (2020-12-22T23:16:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。