From approximation error to optimality gap -- Explaining the performance impact of opportunity cost approximation in integrated demand management and vehicle routing
- URL: http://arxiv.org/abs/2412.13851v1
- Date: Wed, 18 Dec 2024 13:46:46 GMT
- Title: From approximation error to optimality gap -- Explaining the performance impact of opportunity cost approximation in integrated demand management and vehicle routing
- Authors: David Fleckenstein, Robert Klein, Vienna Klein, Claudius Steinhardt,
- Abstract summary: We propose an explainability technique that quantifies and visualizes the magnitude of approximation errors, their immediate impact, and their relevance in specific regions of the state space.
Applying the technique to a generic i-DMVRP in a full-factorial computational study, we show that the technique contributes to better explaining algorithmic performance and provides guidance for the algorithm selection and development process.
- Score: 0.0
- License:
- Abstract: The widespread adoption of digital distribution channels both enables and forces more and more logistical service providers to manage booking processes actively to maintain competitiveness. As a result, their operational planning is no longer limited to solving vehicle routing problems. Instead, demand management decisions and vehicle routing decisions are optimized integratively with the aim of maximizing revenue and minimizing fulfillment cost. The resulting integrated demand management and vehicle routing problems (i-DMVRPs) can be formulated as Markov decision process models and, theoretically, can be solved via the well-known Bellman equation. Unfortunately, the Bellman equation is intractable for realistic-sized instances. Thus, in the literature, i-DMVRPs are often addressed via decomposition-based solution approaches involving an opportunity cost approximation as a key component. Despite its importance, to the best of our knowledge, there is neither a technique to systematically analyze how the accuracy of the opportunity cost approximation translates into overall solution quality nor are there general guidelines on when to apply which class of approximation approach. In this work, we address this research gap by proposing an explainability technique that quantifies and visualizes the magnitude of approximation errors, their immediate impact, and their relevance in specific regions of the state space. Exploiting reward decomposition, it further yields a characterization of different types of approximation errors. Applying the technique to a generic i-DMVRP in a full-factorial computational study and comparing the results with observations in existing literature, we show that the technique contributes to better explaining algorithmic performance and provides guidance for the algorithm selection and development process.
Related papers
- Deep Generative Demand Learning for Newsvendor and Pricing [7.594251468240168]
We consider data-driven inventory and pricing decisions in the feature-based newsvendor problem.
We propose a novel approach leveraging conditional deep generative models (cDGMs) to address these challenges.
We provide theoretical guarantees for our approach, including the consistency of profit estimation and convergence of our decisions to the optimal solution.
arXiv Detail & Related papers (2024-11-13T14:17:26Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
We present MEMENTO, an approach that leverages memory to improve the adaptation of neural solvers at time.
We successfully train all RL auto-regressive solvers on large instances, and show that MEMENTO can scale and is data-efficient.
Overall, MEMENTO enables to push the state-of-the-art on 11 out of 12 evaluated tasks.
arXiv Detail & Related papers (2024-06-24T08:18:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimizing Inventory Routing: A Decision-Focused Learning Approach using
Neural Networks [0.0]
We formulate and propose a decision-focused learning-based approach to solving real-world IRPs.
This approach directly integrates inventory prediction and routing optimization within an end-to-end system potentially ensuring a robust supply chain strategy.
arXiv Detail & Related papers (2023-11-02T04:05:28Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Heuristic Strategies for Solving Complex Interacting Stockpile Blending
Problem with Chance Constraints [14.352521012951865]
In this paper, we consider the uncertainty in material grades and introduce chance constraints that are used to ensure the constraints with high confidence.
To address the stockpile blending problem with chance constraints, we propose a differential evolution algorithm combining two repair operators.
arXiv Detail & Related papers (2021-02-10T07:56:18Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Causal Bayesian Optimization [8.958125394444679]
We study the problem of globally optimizing a variable of interest that is part of a causal model in which a sequence of interventions can be performed.
Our approach combines ideas from causal inference, uncertainty quantification and sequential decision making.
We show how knowing the causal graph significantly improves the ability to reason about optimal decision making strategies.
arXiv Detail & Related papers (2020-05-24T13:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.