Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting
- URL: http://arxiv.org/abs/2102.13273v5
- Date: Mon, 8 Apr 2024 05:37:01 GMT
- Title: Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting
- Authors: Joaquim Dias Garcia, Alexandre Street, Tito Homem-de-Mello, Francisco D. Muñoz,
- Abstract summary: We present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized.
We show that the proposed methodology is scalable and yields consistently better performance than the standard open-loop approach.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove that the solution converges to the best estimator in terms of the expected cost of the selected application. Then, we propose two solution methods: an exact method based on the KKT conditions of the second-level problem and a scalable heuristic approach suitable for decomposition methods. The proposed methodology is applied to the relevant problem of defining dynamic reserve requirements and conditional load forecasts, offering an alternative approach to current ad hoc procedures implemented in industry practices. We benchmark our methodology with the standard sequential least-squares forecast and dispatch planning process. We apply the proposed methodology to an illustrative system and to a wide range of instances, from dozens of buses to large-scale realistic systems with thousands of buses. Our results show that the proposed methodology is scalable and yields consistently better performance than the standard open-loop approach.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized
Neural Mapping [0.0]
We propose LOOP-LC 2.0 as a learning-based approach for solving the power dispatch problem.
A notable advantage of the LOOP-LC 2.0 framework is its ability to ensure near-optimality and strict feasibility of solutions.
We demonstrate the effectiveness of the LOOP-LC 2.0 methodology in terms of training speed, computational time, optimality, and solution feasibility.
arXiv Detail & Related papers (2023-11-08T17:02:53Z) - Relax and penalize: a new bilevel approach to mixed-binary
hyperparameter optimization [0.0]
We tackle the challenging optimization of mixed-binary hyper parameters.
We propose an algorithmic framework that is guaranteed to provide mixed-binary solutions.
We evaluate the performance of our approach for a specific machine learning problem.
arXiv Detail & Related papers (2023-08-21T13:24:52Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
Decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap.
This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems.
arXiv Detail & Related papers (2021-11-22T17:09:57Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.