Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries
- URL: http://arxiv.org/abs/2501.01453v2
- Date: Mon, 24 Mar 2025 23:26:27 GMT
- Title: Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries
- Authors: Ali Rabeh, Ethan Herron, Aditya Balu, Soumik Sarkar, Chinmay Hegde, Adarsh Krishnamurthy, Baskar Ganapathysubramanian,
- Abstract summary: Rapid and accurate simulations of fluid dynamics around complicated geometric bodies are critical in a variety of engineering and scientific applications.<n>While scientific machine learning (SciML) has shown considerable promise, most studies in this field are limited to simple geometries.<n>This paper addresses this gap by benchmarking diverse SciML models for fluid flow prediction over intricate geometries.
- Score: 23.111935712144277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid and accurate simulations of fluid dynamics around complicated geometric bodies are critical in a variety of engineering and scientific applications, including aerodynamics and biomedical flows. However, while scientific machine learning (SciML) has shown considerable promise, most studies in this field are limited to simple geometries, and complex, real-world scenarios are underexplored. This paper addresses this gap by benchmarking diverse SciML models, including neural operators and vision transformer-based foundation models, for fluid flow prediction over intricate geometries. Using a high-fidelity dataset of steady-state flows across various geometries, we evaluate the impact of geometric representations -- Signed Distance Fields (SDF) and binary masks -- on model accuracy, scalability, and generalization. Central to this effort is the introduction of a novel, unified scoring framework that integrates metrics for global accuracy, boundary layer fidelity, and physical consistency to enable a robust, comparative evaluation of model performance. Our findings demonstrate that newer foundation models significantly outperform neural operators, particularly in data-limited scenarios, and that SDF representations yield superior results with sufficient training data. Despite these promises, all models struggle with out-of-distribution generalization, highlighting a critical challenge for future SciML applications. By advancing both evaluation models and modeling capabilities, our work paves the way for robust and scalable ML solutions for fluid dynamics across complex geometries.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - NeuralCFD: Deep Learning on High-Fidelity Automotive Aerodynamics Simulations [11.849142587216903]
Key challenges must be overcome before neural network-based simulation surrogates can be implemented at an industry scale.
We introduce Geometry-preserving Universal Physics Transformer (GP-UPT), which separates geometry encoding and physics predictions.
GP-UPT circumvents the creation of high-quality simulation meshes, enables accurate 3D velocity field predictions at 20 million mesh cells, and excels in transfer learning from low-fidelity to high-fidelity simulation datasets.
arXiv Detail & Related papers (2025-02-13T17:58:07Z) - Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
This paper proposes a data-driven approach to encode high-dimensional scientific data into low-dimensional, physically meaningful representations.
We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-01-31T17:51:14Z) - DoMINO: A Decomposable Multi-scale Iterative Neural Operator for Modeling Large Scale Engineering Simulations [2.300471499347615]
DoMINO is a point cloudbased machine learning model that uses local geometric information to predict flow fields on discrete points.
DoMINO is validated for the automotive aerodynamics use case using the DrivAerML dataset.
arXiv Detail & Related papers (2025-01-23T03:28:10Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.<n>GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model [49.06911227670408]
We show that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization.<n>We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model.
arXiv Detail & Related papers (2024-12-18T14:39:43Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics [1.8749305679160366]
We introduce a framework for embedding deep learning models within a generic finite element solver to solve the Navier-Stokes equations.
We validate our method for flow over a backwards-facing step and test its performance on novel geometries.
We show that our GNN-based closure model may be learned in a data-limited scenario by interpreting closure modeling as a solver-constrained optimization.
arXiv Detail & Related papers (2023-07-25T14:27:49Z) - h-analysis and data-parallel physics-informed neural networks [0.7614628596146599]
We explore the data-parallel acceleration of machine learning schemes with a focus on physics-informed neural networks (PINNs)
We detail a novel protocol based on $h$-analysis and data-parallel acceleration through the Horovod training framework.
We show that the acceleration is straightforward to implement, does not compromise training, and proves to be highly efficient and controllable.
arXiv Detail & Related papers (2023-02-17T12:15:18Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances.
We create collections of fields from numerical PDE solvers and existing simulation data repositories.
A multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed.
arXiv Detail & Related papers (2022-02-08T19:19:08Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
We introduce multi-agent reinforcement learning as an automated discovery tool of turbulence models.
We demonstrate the potential of this approach on Large Eddy Simulations of homogeneous and isotropic turbulence.
arXiv Detail & Related papers (2020-05-18T18:45:09Z) - Incorporating Symmetry into Deep Dynamics Models for Improved
Generalization [24.363954435050264]
We propose to improve accuracy and generalization by incorporating symmetries into convolutional neural networks.
Our models are theoretically and experimentally robust to distributional shift by symmetry group transformations.
Compared with image or text applications, our work is a significant step towards applying equivariant neural networks to high-dimensional systems.
arXiv Detail & Related papers (2020-02-08T01:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.