A Black-Box Evaluation Framework for Semantic Robustness in Bird's Eye View Detection
- URL: http://arxiv.org/abs/2412.13913v3
- Date: Tue, 04 Feb 2025 10:45:18 GMT
- Title: A Black-Box Evaluation Framework for Semantic Robustness in Bird's Eye View Detection
- Authors: Fu Wang, Yanghao Zhang, Xiangyu Yin, Guangliang Cheng, Zeyu Fu, Xiaowei Huang, Wenjie Ruan,
- Abstract summary: We develop a robustness evaluation framework that adversarially optimises three common semantic perturbations to deceive BEV models.
To address the challenge posed by optimising the semantic perturbation, we design a smoothed, distance-based surrogate function to replace the mAP metric.
We provide a benchmark on the semantic robustness of ten recent BEV models.
- Score: 24.737984789074094
- License:
- Abstract: Camera-based Bird's Eye View (BEV) perception models receive increasing attention for their crucial role in autonomous driving, a domain where concerns about the robustness and reliability of deep learning have been raised. While only a few works have investigated the effects of randomly generated semantic perturbations, aka natural corruptions, on the multi-view BEV detection task, we develop a black-box robustness evaluation framework that adversarially optimises three common semantic perturbations: geometric transformation, colour shifting, and motion blur, to deceive BEV models, serving as the first approach in this emerging field. To address the challenge posed by optimising the semantic perturbation, we design a smoothed, distance-based surrogate function to replace the mAP metric and introduce SimpleDIRECT, a deterministic optimisation algorithm that utilises observed slopes to guide the optimisation process. By comparing with randomised perturbation and two optimisation baselines, we demonstrate the effectiveness of the proposed framework. Additionally, we provide a benchmark on the semantic robustness of ten recent BEV models. The results reveal that PolarFormer, which emphasises geometric information from multi-view images, exhibits the highest robustness, whereas BEVDet is fully compromised, with its precision reduced to zero.
Related papers
- Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Improving Viewpoint Robustness for Visual Recognition via Adversarial
Training [26.824940629150362]
We propose Viewpoint-Invariant Adversarial Training (VIAT) to improve the viewpoint robustness of image classifiers.
We show that VIAT significantly improves the viewpoint robustness of various image classifiers based on the diversity of adversarial viewpoints generated by GMVFool.
arXiv Detail & Related papers (2023-07-21T12:18:35Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.