Uncertainty Quantification of Wind Gust Predictions in the Northeast US: An Evidential Neural Network and Explainable Artificial Intelligence Approach
- URL: http://arxiv.org/abs/2502.00300v1
- Date: Sat, 01 Feb 2025 03:50:11 GMT
- Title: Uncertainty Quantification of Wind Gust Predictions in the Northeast US: An Evidential Neural Network and Explainable Artificial Intelligence Approach
- Authors: Israt Jahan, John S. Schreck, David John Gagne, Charlie Becker, Marina Astitha,
- Abstract summary: Uncertainty quantification (UQ) identifies when predictions are reliable or needs cautious interpretation.
We introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions.
- Score: 0.0
- License:
- Abstract: Machine learning has shown promise in reducing bias in numerical weather model predictions of wind gusts. Yet, they underperform to predict high gusts even with additional observations due to the right-skewed distribution of gusts. Uncertainty quantification (UQ) addresses this by identifying when predictions are reliable or needs cautious interpretation. Using data from 61 extratropical storms in the Northeastern USA, we introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions, leveraging atmospheric variables from the Weather Research and Forecasting (WRF) model as features and gust observations as targets. Explainable artificial intelligence (XAI) techniques demonstrated that key predictive features also contributed to higher uncertainty. Estimated uncertainty correlated with storm intensity and spatial gust gradients. ENN allowed constructing gust prediction intervals without requiring an ensemble. From an operational perspective, providing gust forecasts with quantified uncertainty enhances stakeholders' confidence in risk assessment and response planning for extreme gust events.
Related papers
- Evidential Deep Learning for Probabilistic Modelling of Extreme Storm Events [4.2623421577291225]
Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide confidence about its predictions.
EDL not only reduces computational overhead but also enhances predictive uncertainty.
This method opens up novel opportunities in research areas such as climate risk assessment.
arXiv Detail & Related papers (2024-12-18T17:03:19Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification [2.1940162009107382]
Geomagnetic storms can disrupt critical infrastructure like GPS, satellite communications, and power grids.
This research introduces TriQXNet, a novel hybrid classical-quantum neural network for Dst forecasting.
Our model integrates classical and quantum computing, conformal prediction, and explainable AI (XAI) within a hybrid architecture.
arXiv Detail & Related papers (2024-07-09T08:30:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces [78.08947381962658]
Tipping points are abrupt, drastic, and often irreversible changes in the evolution of non-stationary dynamical systems.
We learn the evolution of such non-stationary systems using a novel recurrent neural operator (RNO), which learns mappings between function spaces.
We propose a conformal prediction framework to forecast tipping points by monitoring deviations from physics constraints.
arXiv Detail & Related papers (2023-08-17T05:42:27Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
We consider an encoder-decoder based deep ensemble network for capturing both perception and predictive uncertainty simultaneously.
Overall, deep ensembles provided more robust predictions and the consideration of upstream uncertainty further increased the estimation accuracy for the model.
arXiv Detail & Related papers (2023-05-26T04:27:48Z) - Bayesian neural networks for the probabilistic forecasting of wind
direction and speed using ocean data [0.0]
We consider the use of Bayesian Neural Networks (BNNs) to predict wind speed and direction.
For our dataset, we use observations recorded at the FINO1 research platform in the North Sea.
We conclude that the accuracy and uncertainty of the wind speed and direction predictions made by our network are unaffected by the construction of the nearby Alpha Ventus wind farm.
arXiv Detail & Related papers (2022-06-14T15:57:14Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Robust Probabilistic Time Series Forecasting [20.235389891676512]
We propose a framework for robust probabilistic time series forecasting.
We generalize the concept of adversarial input perturbations, based on which we formulate the concept of robustness in terms of bounded Wasserstein deviation.
Our methods are empirically effective in enhancing the forecast quality under additive adversarial attacks and forecast consistency under supplement of noisy observations.
arXiv Detail & Related papers (2022-02-24T05:46:26Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.