Enhancing Quantum Synchronization in a driven qubit system coupled to a structured environment
- URL: http://arxiv.org/abs/2412.14114v1
- Date: Wed, 18 Dec 2024 18:00:35 GMT
- Title: Enhancing Quantum Synchronization in a driven qubit system coupled to a structured environment
- Authors: Amir Hossein Houshmand Almani, Ali Mortezapour, Alireza Nourmandipour,
- Abstract summary: We show that tuning the amplitude-tofrequency ratio of the modulation process on the zeros of the zeroth-order Bessel function led to phase locking.
Results provide new insights into efficiently understanding phase dynamics in quantum environments.
- Score: 1.1068280788997427
- License:
- Abstract: In this paper, we delve into the issue of Quantum Synchronization in a driven two-level (qubit) system situated within a structured environment. Our findings have practical implications as we discover that adding a time-dependent periodic modulation to the transition frequency of the qubit can significantly enhance quantum synchronization. We first discovered the phase preference and, consequently, the phase locking conditions in our system using the Husimi Q-function. It is revealed that combining frequency modulation and non-Markovian effects enables us to achieve a stable phase-locking for the system. We show that tuning the amplitude-tofrequency ratio of the modulation process on the zeros of the zeroth-order Bessel function led to phase locking and, thus, surprisingly enhances quantum synchronization in the system. These results provide new insights into efficiently understanding phase dynamics in quantum environments.
Related papers
- Investigating the Impact of Qubit Velocity on Quantum Synchronization Dynamics [1.1068280788997427]
We investigate the quantum synchronization dynamics of a moving qubit within a dissipative cavity environment.
We find that the qubit's velocity and detuning influence synchronization, offering potential pathways to enhance coherence in quantum systems.
arXiv Detail & Related papers (2024-09-02T19:16:16Z) - Enhancing quantum phase synchronization through squeezed-reservoir engineering [1.7811840395202345]
We investigate the enhancement of quantum phase synchronization in a two-level system (TLS) coupled to a squeezed reservoir.
We demonstrate that the squeezed reservoir imparts its squeezing characteristics to the TLS, leading to a more localized and pronounced synchronization.
arXiv Detail & Related papers (2024-08-19T09:52:13Z) - Impact of quantum noise on phase transitions in an atom-cavity system with limit cycles [0.0]
We show that quantum noise pushes the system to exhibit signatures of LCs for interaction strengths lower than the critical value predicted by the standard mean-field theory.
Our work demonstrates that the apparent crossover-like behavior between stationary phases brought by finite-size effects from quantum fluctuations also apply to transitions involving dynamical phases.
arXiv Detail & Related papers (2024-07-31T07:30:56Z) - Enhanced quantum synchronization of a driven qubit under non-Markovian
dynamics [0.0]
We investigate quantum phase synchronization of a two-level system driven by a semiclassical laser field.
In the Markov regime, the phase preference of the qubit goes away in the long time limit, whereas the long-time phase localization persists in the non-Markovian regime.
Various system-environment parameters determine the synchronization regions and the qubit phase synchronization is shown to be enhanced in the non-Markov regime.
arXiv Detail & Related papers (2023-11-09T11:17:20Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Metastable quantum entrainment [0.0]
We show that quantum entrainment is here characterized by fluctuations driving an incoherent process between two metastable phases.
We discuss connections with the phenomena of dissipative phase transitions and transient synchronization in open quantum systems.
arXiv Detail & Related papers (2021-09-03T10:58:21Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.