GaraMoSt: Parallel Multi-Granularity Motion and Structural Modeling for Efficient Multi-Frame Interpolation in DSA Images
- URL: http://arxiv.org/abs/2412.14118v2
- Date: Thu, 19 Dec 2024 14:18:57 GMT
- Title: GaraMoSt: Parallel Multi-Granularity Motion and Structural Modeling for Efficient Multi-Frame Interpolation in DSA Images
- Authors: Ziyang Xu, Huangxuan Zhao, Wenyu Liu, Xinggang Wang,
- Abstract summary: Digital Subtraction Angiography (DSA) images contain complex vascular structures and various motions.<n>Applying natural scene Video Frame Interpolation (VFI) methods results in motion artifacts, structural dissipation, and blurriness.<n>MoSt-DSA has specifically addressed these issues for the first time and achieved SOTA results.<n>We propose GaraMoSt to address these issues within the same computational time scale.
- Score: 35.42266460525047
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid and accurate direct multi-frame interpolation method for Digital Subtraction Angiography (DSA) images is crucial for reducing radiation and providing real-time assistance to physicians for precise diagnostics and treatment. DSA images contain complex vascular structures and various motions. Applying natural scene Video Frame Interpolation (VFI) methods results in motion artifacts, structural dissipation, and blurriness. Recently, MoSt-DSA has specifically addressed these issues for the first time and achieved SOTA results. However, MoSt-DSA's focus on real-time performance leads to insufficient suppression of high-frequency noise and incomplete filtering of low-frequency noise in the generated images. To address these issues within the same computational time scale, we propose GaraMoSt. Specifically, we optimize the network pipeline with a parallel design and propose a module named MG-MSFE. MG-MSFE extracts frame-relative motion and structural features at various granularities in a fully convolutional parallel manner and supports independent, flexible adjustment of context-aware granularity at different scales, thus enhancing computational efficiency and accuracy. Extensive experiments demonstrate that GaraMoSt achieves the SOTA performance in accuracy, robustness, visual effects, and noise suppression, comprehensively surpassing MoSt-DSA and other natural scene VFI methods. The code and models are available at https://github.com/ZyoungXu/GaraMoSt.
Related papers
- ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On [21.938301712852226]
This paper introduces ITA-MDT, the Image-Timestep-Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON)
The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment.
arXiv Detail & Related papers (2025-03-26T10:49:44Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.
We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)
PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.
FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.
We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.
To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)
We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD)
ParsDMD is a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both temporal and purely temporal data.
It is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations, and atmospheric sea-surface temperature (SST) data.
arXiv Detail & Related papers (2024-10-22T03:00:11Z) - QMambaBSR: Burst Image Super-Resolution with Query State Space Model [55.56075874424194]
Burst super-resolution aims to reconstruct high-resolution images with higher quality and richer details by fusing the sub-pixel information from multiple burst low-resolution frames.
In BusrtSR, the key challenge lies in extracting the base frame's content complementary sub-pixel details while simultaneously suppressing high-frequency noise disturbance.
We introduce a novel Query Mamba Burst Super-Resolution (QMambaBSR) network, which incorporates a Query State Space Model (QSSM) and Adaptive Up-sampling module (AdaUp)
arXiv Detail & Related papers (2024-08-16T11:15:29Z) - MoSt-DSA: Modeling Motion and Structural Interactions for Direct Multi-Frame Interpolation in DSA Images [31.357770667947907]
We propose MoSt-DSA, the first work that uses deep learning for Digital Subtraction Angiography frame.
Unlike natural scene Video Frame Interpolation (VFI) methods that extract unclear or coarse-grained features, we devise a general module that models motion and structural context interactions between frames in an efficient full convolution manner.
MoSt-DSA demonstrates robust results across 470 DSA image sequences, with average SSIM over 0.93, average PSNR over 38 (standard deviations of less than 0.030 and 3.6, respectively), comprehensively achieving state-of-the-art performance in accuracy, speed, visual effect, and
arXiv Detail & Related papers (2024-07-09T17:50:54Z) - Image Deraining with Frequency-Enhanced State Space Model [2.9465623430708905]
This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM)<n>We develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively.<n>Experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-05-26T07:45:12Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - IFT: Image Fusion Transformer for Ghost-free High Dynamic Range Imaging [26.127764855477782]
Multi-frame high dynamic range ( HDR) imaging aims to reconstruct ghost-free images with photo-realistic details from content-complementary but spatially misaligned low dynamic range (LDR) images.
Existing HDR algorithms are prone to producing ghosting artifacts as their methods fail to capture long-range dependencies between LDR frames with large motion in dynamic scenes.
We propose a novel image fusion transformer, referred to as IFT, which presents a fast global patch searching (FGPS) module followed by a self-cross fusion module (SCF) for ghost-free HDR imaging.
arXiv Detail & Related papers (2023-09-26T15:38:52Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
We introduce a customized design for slim diffusion probabilistic models (DPM) for light-weight image synthesis.
We achieve 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks.
arXiv Detail & Related papers (2022-11-27T16:27:28Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.