論文の概要: Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective
- arxiv url: http://arxiv.org/abs/2412.14135v1
- Date: Wed, 18 Dec 2024 18:24:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:50.348171
- Title: Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective
- Title(参考訳): 検索と学習のスケーリング:強化学習の観点からo1を再現するロードマップ
- Authors: Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo, Xuanjing Huang, Xipeng Qiu,
- Abstract要約: OpenAIは、o1の背後にある主要な技術は強化学習であると主張している。
本稿では、強化学習の観点から、o1を達成するためのロードマップを分析する。
- 参考スコア(独自算出の注目度): 77.94874338927492
- License:
- Abstract: OpenAI o1 represents a significant milestone in Artificial Inteiligence, which achieves expert-level performances on many challanging tasks that require strong reasoning ability.OpenAI has claimed that the main techinique behinds o1 is the reinforcement learining. Recent works use alternative approaches like knowledge distillation to imitate o1's reasoning style, but their effectiveness is limited by the capability ceiling of the teacher model. Therefore, this paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning, focusing on four key components: policy initialization, reward design, search, and learning. Policy initialization enables models to develop human-like reasoning behaviors, equipping them with the ability to effectively explore solution spaces for complex problems. Reward design provides dense and effective signals via reward shaping or reward modeling, which is the guidance for both search and learning. Search plays a crucial role in generating high-quality solutions during both training and testing phases, which can produce better solutions with more computation. Learning utilizes the data generated by search for improving policy, which can achieve the better performance with more parameters and more searched data. Existing open-source projects that attempt to reproduce o1 can be seem as a part or a variant of our roadmap. Collectively, these components underscore how learning and search drive o1's advancement, making meaningful contributions to the development of LLM.
- Abstract(参考訳): OpenAI o1は、強力な推論能力を必要とする多くのチャランギングタスクにおいて、専門家レベルのパフォーマンスを達成する人工的インテリジェンスにおいて重要なマイルストーンである。OpenAIは、o1の背後にある主要な技術が強化学習であると主張している。
近年の研究では、知識蒸留のような代替手法を用いて、o1の推論スタイルを模倣しているが、その効果は教師モデルの能力天井によって制限されている。
そこで本稿では, 政策初期化, 報酬設計, 探索, 学習の4つの重要な要素に着目し, 強化学習の観点からo1を達成するためのロードマップを分析する。
ポリシーの初期化により、モデルは人間のような推論の振る舞いを発達させ、複雑な問題に対する解空間を効果的に探索することができる。
Rewardデザインは、検索と学習の両方のためのガイダンスである報酬形成や報酬モデリングを通じて、密集した効果的な信号を提供する。
検索は、トレーニングとテストフェーズの両方で高品質なソリューションを生成する上で重要な役割を担います。
学習は、探索によって生成されたデータを利用してポリシーを改善し、より多くのパラメータとより検索されたデータでより良いパフォーマンスを達成する。
o1を再現しようとする既存のオープンソースプロジェクトは、ロードマップの一部か変種に思えるかもしれません。
これらのコンポーネントは、学習と探索がo1の進歩を駆動し、LLMの開発に有意義な貢献をすることを示す。
関連論文リスト
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
OpenAIのo1モデルは、ほとんどのデータセットで最高のパフォーマンスを実現しています。
また、いくつかの推論ベンチマークについて詳細な分析を行う。
論文 参考訳(メタデータ) (2024-10-17T15:09:03Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
強化学習(Reinforcement Learning, RL)は、ゲーム、ロボティクス、自動運転車など、さまざまな分野やアプリケーションで大きな成功を収めている。
本研究の目的は,探索と利用を分離して効率よく学習するエージェントを訓練することであり,エージェントが最適解の難解を逃れられるようにすることである。
提案したOPARL(Optimistic and Pessimistic Actor Reinforcement Learning)アルゴリズムに実装した。
論文 参考訳(メタデータ) (2023-12-26T09:03:23Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Large Language Models can Implement Policy Iteration [18.424558160071808]
In-Context Policy Iterationは、基礎モデルを用いてReinforcement Learning(RL)を実行するアルゴリズムである。
ICPIは、専門家によるデモンストレーションやグラデーションなしでRLタスクを実行することを学ぶ。
ICPIは、RL環境との試行錯誤によってポリシーを導出するプロンプトの内容を反復的に更新する。
論文 参考訳(メタデータ) (2022-10-07T21:18:22Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
教師なしスキル発見(英語: Unsupervised skill discovery)とは、報酬関数にアクセスせずに一連のポリシーを学ぶアルゴリズムのクラスである。
教師なしのスキル発見アルゴリズムは、あらゆる報酬関数に最適なスキルを学習しないことを示す。
論文 参考訳(メタデータ) (2021-10-06T13:08:36Z) - Efficient Deep Learning: A Survey on Making Deep Learning Models
Smaller, Faster, and Better [0.0]
ディープラーニングモデルの進歩的な改善により、パラメータの数、レイテンシ、トレーニングに必要なリソースなどが大幅に増加した。
深層学習における効率性の問題の提示と動機付けを行い,続いてモデル効率の5つの中核領域を徹底的に調査した。
これは、モデリング技術からハードウェアサポートまで、モデル効率のランドスケープをカバーした、効率的なディープラーニング分野における初めての総合的な調査であると考えています。
論文 参考訳(メタデータ) (2021-06-16T17:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。