論文の概要: Efficient Reinforcement Learning via Decoupling Exploration and Utilization
- arxiv url: http://arxiv.org/abs/2312.15965v4
- Date: Fri, 10 May 2024 13:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 20:17:21.496124
- Title: Efficient Reinforcement Learning via Decoupling Exploration and Utilization
- Title(参考訳): 探索と利用の分離による効率的な強化学習
- Authors: Jingpu Yang, Helin Wang, Qirui Zhao, Zhecheng Shi, Zirui Song, Miao Fang,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、ゲーム、ロボティクス、自動運転車など、さまざまな分野やアプリケーションで大きな成功を収めている。
本研究の目的は,探索と利用を分離して効率よく学習するエージェントを訓練することであり,エージェントが最適解の難解を逃れられるようにすることである。
提案したOPARL(Optimistic and Pessimistic Actor Reinforcement Learning)アルゴリズムに実装した。
- 参考スコア(独自算出の注目度): 6.305976803910899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL), recognized as an efficient learning approach, has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles. Classical single-agent reinforcement learning grapples with the imbalance of exploration and exploitation as well as limited generalization abilities. This methodology frequently leads to algorithms settling for suboptimal solutions that are tailored only to specific datasets. In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions. In reinforcement learning, the previously imposed pessimistic punitive measures have deprived the model of its exploratory potential, resulting in diminished exploration capabilities. To address this, we have introduced an additional optimistic Actor to enhance the model's exploration ability, while employing a more constrained pessimistic Actor for performance evaluation. The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm. This unique amalgamation within the reinforcement learning paradigm fosters a more balanced and efficient approach. It facilitates the optimization of policies that concentrate on high-reward actions via pessimistic exploitation strategies while concurrently ensuring extensive state coverage through optimistic exploration. Empirical and theoretical investigations demonstrate that OPARL enhances agent capabilities in both utilization and exploration. In the most tasks of DMControl benchmark and Mujoco environment, OPARL performed better than state-of-the-art methods. Our code has released on https://github.com/yydsok/OPARL
- Abstract(参考訳): 効率的な学習アプローチとして認識されている強化学習(RL)は、ゲーム、ロボティクス、自動運転車など、複数の分野やアプリケーションで顕著な成功を収めている。
古典的な単エージェント強化学習は、探索と搾取の不均衡と限定的な一般化能力を伴う。
この手法は、特定のデータセットにのみ適合した最適化されたサブ最適解のアルゴリズムにしばしば導かれる。
本研究の目的は,探索と利用を分離して効率よく学習するエージェントを訓練することであり,エージェントが最適解の難解を逃れられるようにすることである。
強化学習において、以前に課された悲観的な懲罰措置は、探索可能性のモデルを取り除き、探索能力は低下した。
そこで本研究では,より制約のある悲観的アクタを性能評価に用いながら,モデルの探索能力を高めるための楽観的アクタを新たに導入した。
提案したOPARL(Optimistic and Pessimistic Actor Reinforcement Learning)アルゴリズムに実装した。
強化学習パラダイムにおけるこのユニークな融合は、よりバランスよく効率的なアプローチを促進する。
これは、悲観的な搾取戦略を通じて高次行動に集中する政策の最適化を促進すると同時に、楽観的な探索を通じて広範な州カバレッジを同時に確保する。
実証的および理論的研究により、OPARLは、利用と探索の両方において、エージェント能力を高めることが示されている。
DMControlベンチマークとMujoco環境のほとんどのタスクにおいて、OPARLは最先端の手法よりも優れていた。
私たちのコードはhttps://github.com/yydsok/OPARLでリリースされました。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Preference-Guided Reinforcement Learning for Efficient Exploration [7.83845308102632]
LOPE: Learning Online with trajectory Preference guidancE, a end-to-end preference-guided RL framework。
我々の直感では、LOPEは人的フィードバックをガイダンスとして考慮し、オンライン探索の焦点を直接調整する。
LOPEは収束率と全体的な性能に関して、最先端のいくつかの手法より優れている。
論文 参考訳(メタデータ) (2024-07-09T02:11:12Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
本稿では,ETOと呼ばれる探索に基づく軌道最適化手法を提案する。
この学習方法はオープンLLMエージェントの性能を向上させるために設計されている。
3つの複雑なタスクに関する実験は、ETOがベースライン性能をはるかに上回っていることを示す。
論文 参考訳(メタデータ) (2024-03-04T21:50:29Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Strategically Efficient Exploration in Competitive Multi-agent
Reinforcement Learning [25.041622707261897]
本研究は,非協調的マルチエージェント環境における楽観的な探索の役割を理解することを目的とする。
ゼロサムゲームにおいて、楽観的な探索は、学習者が戦略的なプレーとは無関係な状態空間のサンプリング部分を無駄にしてしまうことを示します。
この問題に対処するため、マルコフゲームにおいて戦略的に効率的な探索という形式的概念を導入し、これを有限マルコフゲームのための戦略的に効率的な2つの学習アルゴリズムの開発に利用する。
論文 参考訳(メタデータ) (2021-07-30T15:22:59Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。