論文の概要: AniDoc: Animation Creation Made Easier
- arxiv url: http://arxiv.org/abs/2412.14173v1
- Date: Wed, 18 Dec 2024 18:59:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:47:41.830706
- Title: AniDoc: Animation Creation Made Easier
- Title(参考訳): AniDoc:アニメーション作成がより簡単になった
- Authors: Yihao Meng, Hao Ouyang, Hanlin Wang, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Zhiheng Liu, Yujun Shen, Huamin Qu,
- Abstract要約: 我々の研究は、ますます強力なAIの可能性を生かして、2Dアニメーションを制作する際のコスト削減に重点を置いている。
AniDocはビデオラインアートのカラー化ツールとして登場し、自動的にスケッチシーケンスをカラーアニメーションに変換する。
本モデルでは,一致マッチングを明示的なガイダンスとして活用し,基準文字と各ラインアートフレームの変動に強いロバスト性を与える。
- 参考スコア(独自算出の注目度): 54.97341104616779
- License:
- Abstract: The production of 2D animation follows an industry-standard workflow, encompassing four essential stages: character design, keyframe animation, in-betweening, and coloring. Our research focuses on reducing the labor costs in the above process by harnessing the potential of increasingly powerful generative AI. Using video diffusion models as the foundation, AniDoc emerges as a video line art colorization tool, which automatically converts sketch sequences into colored animations following the reference character specification. Our model exploits correspondence matching as an explicit guidance, yielding strong robustness to the variations (e.g., posture) between the reference character and each line art frame. In addition, our model could even automate the in-betweening process, such that users can easily create a temporally consistent animation by simply providing a character image as well as the start and end sketches. Our code is available at: https://yihao-meng.github.io/AniDoc_demo.
- Abstract(参考訳): 2Dアニメーションは、キャラクタデザイン、キーフレームアニメーション、イン・バイ・ウィーニング、カラー化の4つの重要なステージを含む、業界標準のワークフローに従っている。
我々の研究は、ますます強力な生成AIの可能性を生かして、上記のプロセスにおける労働コストの削減に重点を置いている。
ビデオ拡散モデルを基盤として、AniDocはビデオラインアートのカラー化ツールとして登場し、スケッチシーケンスを基準文字仕様に従って色付きアニメーションに自動的に変換する。
本モデルでは、対応マッチングを明示的なガイダンスとして活用し、基準文字と各ラインアートフレーム間の変動(例えば姿勢)に強い堅牢性をもたらす。
さらに,本モデルでは,文字画像だけでなく,開始と終了のスケッチも簡単に提供することで,時間的に一貫したアニメーションを容易に作成できるように,中間処理の自動化も可能である。
私たちのコードは、https://yihao-meng.github.io/AniDoc_demo.orgで利用可能です。
関連論文リスト
- FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations [65.64014682930164]
スケッチアニメーションは、単純なフリップブックの落書きからプロのスタジオプロダクションまで、ビジュアルなストーリーテリングのための強力な媒体を提供する。
FlipSketchは、フリップブックアニメーションの魔法を復活させるシステムです。
論文 参考訳(メタデータ) (2024-11-16T14:53:03Z) - AnimateZoo: Zero-shot Video Generation of Cross-Species Animation via Subject Alignment [64.02822911038848]
動物アニメーションを作成するため, ゼロショット拡散に基づくビデオジェネレータAnimateZooを提案する。
AnimateZooで使われる主要なテクニックは、2つのステップを含む被写体アライメントです。
我々のモデルは、正確な動き、一貫した外観、高忠実度フレームを特徴とする映像を生成することができる。
論文 参考訳(メタデータ) (2024-04-07T12:57:41Z) - AnimateZero: Video Diffusion Models are Zero-Shot Image Animators [63.938509879469024]
我々はAnimateZeroを提案し、事前訓練されたテキスト・ビデオ拡散モデル、すなわちAnimateDiffを提案する。
外観制御のために,テキスト・ツー・イメージ(T2I)生成から中間潜伏子とその特徴を借りる。
時間的制御では、元のT2Vモデルのグローバルな時間的注意を位置補正窓の注意に置き換える。
論文 参考訳(メタデータ) (2023-12-06T13:39:35Z) - Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation [27.700371215886683]
拡散モデルは、その堅牢な生成能力のために、視覚世代研究の主流となっている。
本稿では,キャラクターアニメーションに適した新しいフレームワークを提案する。
トレーニングデータを拡張することにより、任意の文字をアニメーション化することが可能となり、他の画像とビデオの手法と比較して、文字アニメーションにおいて優れた結果が得られる。
論文 参考訳(メタデータ) (2023-11-28T12:27:15Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
本稿では、特定の動きシーケンスに従って、特定の参照アイデンティティのビデオを生成することを目的とした、人間の画像アニメーションタスクについて検討する。
既存のアニメーションは、通常、フレームウォーピング技術を用いて参照画像を目標運動に向けてアニメーションする。
MagicAnimateは,時間的一貫性の向上,参照画像の忠実な保存,アニメーションの忠実性向上を目的とした,拡散に基づくフレームワークである。
論文 参考訳(メタデータ) (2023-11-27T18:32:31Z) - SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches [0.9645196221785693]
2Dアニメーションは、キャラクター、エフェクト、バックグラウンドアートに使用されるゲーム開発において一般的な要素である。
アニメーションの自動化アプローチは存在するが、アニメーションを念頭に置いて設計されている。
本稿では,アニメーションの標準的なワークフローにより密着した問題定式化を提案する。
論文 参考訳(メタデータ) (2022-09-01T02:43:19Z) - Deep Animation Video Interpolation in the Wild [115.24454577119432]
本研究では,アニメーション・ビデオ・コードに関する問題を初めて形式的に定義・検討する。
効果的なフレームワークであるAnimeInterpを2つの専用モジュールで粗密に提案します。
特にAnimeInterpは、野生のアニメーションシナリオに良好な知覚品質と堅牢性を示します。
論文 参考訳(メタデータ) (2021-04-06T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。