Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs
- URL: http://arxiv.org/abs/2412.14218v1
- Date: Wed, 18 Dec 2024 13:50:31 GMT
- Title: Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs
- Authors: Jiaming Yu, Le Liang, Chongtao Guo, Ziyang Guo, Shi Jin, Geoffrey Ye Li,
- Abstract summary: This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks.
In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model.
We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate.
- Score: 47.600901884970845
- License:
- Abstract: This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks. In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model. We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate. Moreover, we theoretically prove the convergence of the proposed heterogeneous MARL method when using the linear value function approximation. Our method maximizes the network throughput and ensures fairness among stations, therefore, enhancing the overall network performance. Simulation results demonstrate that the proposed QPMIX algorithm improves throughput, mean delay, delay jitter, and collision rates compared with conventional carrier-sense multiple access with collision avoidance in the saturated traffic scenario. Furthermore, the QPMIX is shown to be robust in unsaturated and delay-sensitive traffic scenarios, and promotes cooperation among heterogeneous agents.
Related papers
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
We formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
We propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN)
The proposed method is evaluated in a simulated environment and compared to a centralized baseline showing promising results.
arXiv Detail & Related papers (2024-04-02T01:45:03Z) - A Bayesian Framework of Deep Reinforcement Learning for Joint O-RAN/MEC
Orchestration [12.914011030970814]
Multi-access Edge Computing (MEC) can be implemented together with Open Radio Access Network (O-RAN) over commodity platforms to offer low-cost deployment.
In this paper, a joint O-RAN/MEC orchestration using a Bayesian deep reinforcement learning (RL)-based framework is proposed.
arXiv Detail & Related papers (2023-12-26T18:04:49Z) - Mobilizing Personalized Federated Learning in Infrastructure-Less and
Heterogeneous Environments via Random Walk Stochastic ADMM [0.14597673707346284]
This paper explores the challenges of implementing Federated Learning (FL) in practical scenarios featuring isolated nodes with data heterogeneity.
To overcome these challenges, we propose a novel mobilizing personalized FL approach, which aims to facilitate mobility and resilience.
We develop a novel optimization algorithm called Random Walk Alternating Direction Method of Multipliers (RWSADMM)
arXiv Detail & Related papers (2023-04-25T03:00:18Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Large-Scale Traffic Signal Control by a Nash Deep Q-network Approach [7.23135508361981]
We introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches.
One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process.
We show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
arXiv Detail & Related papers (2023-01-02T12:58:51Z) - Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated Networks [12.080548048901374]
This paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN.
Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process.
The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem.
arXiv Detail & Related papers (2022-12-05T07:40:29Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.