Scalable spectral representations for multi-agent reinforcement learning in network MDPs
- URL: http://arxiv.org/abs/2410.17221v2
- Date: Mon, 18 Nov 2024 15:21:40 GMT
- Title: Scalable spectral representations for multi-agent reinforcement learning in network MDPs
- Authors: Zhaolin Ren, Runyu Zhang, Bo Dai, Na Li,
- Abstract summary: A popular model for multi-agent control, Network Markov Decision Processes (MDPs) pose a significant challenge to efficient learning.
We first derive scalable spectral local representations for network MDPs, which induces a network linear subspace for the local $Q$-function of each agent.
We design a scalable algorithmic framework for continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm.
- Score: 13.782868855372774
- License:
- Abstract: Network Markov Decision Processes (MDPs), a popular model for multi-agent control, pose a significant challenge to efficient learning due to the exponential growth of the global state-action space with the number of agents. In this work, utilizing the exponential decay property of network dynamics, we first derive scalable spectral local representations for network MDPs, which induces a network linear subspace for the local $Q$-function of each agent. Building on these local spectral representations, we design a scalable algorithmic framework for continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm. Empirically, we validate the effectiveness of our scalable representation-based approach on two benchmark problems, and demonstrate the advantages of our approach over generic function approximation approaches to representing the local $Q$-functions.
Related papers
- SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks [10.514231683620517]
This paper focuses on real-world systems experiencing inter-carrier interference (ICI) and channel reuse by multiple large-scale networks.
We propose a novel multi-agent reinforcement learning framework for distributed DCA, named Channel Allocation RL To Overlapped Networks (CARLTON)
Our results demonstrate exceptional performance and robust generalization, showcasing superior efficiency compared to alternative state-of-the-art methods.
arXiv Detail & Related papers (2024-02-17T20:03:02Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
We introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA.
MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts.
Experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.
arXiv Detail & Related papers (2022-09-30T03:40:10Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Region-Based Semantic Factorization in GANs [67.90498535507106]
We present a highly efficient algorithm to factorize the latent semantics learned by Generative Adversarial Networks (GANs) concerning an arbitrary image region.
Through an appropriately defined generalized Rayleigh quotient, we solve such a problem without any annotations or training.
Experimental results on various state-of-the-art GAN models demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-02-19T17:46:02Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
We propose a novel network structure called hierarchical graph recurrent network(HGRN) for multi-agent cooperation under partial observability.
Based on the above technologies, we proposed a value-based MADRL algorithm called Soft-HGRN and its actor-critic variant named SAC-HRGN.
arXiv Detail & Related papers (2021-09-05T09:51:25Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Scalable Multi-Agent Reinforcement Learning for Networked Systems with
Average Reward [17.925681736096482]
It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues.
In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner.
arXiv Detail & Related papers (2020-06-11T17:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.